首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   12篇
电工技术   4篇
化学工业   60篇
机械仪表   2篇
建筑科学   7篇
能源动力   3篇
轻工业   30篇
无线电   38篇
一般工业技术   39篇
冶金工业   10篇
原子能技术   1篇
自动化技术   40篇
  2023年   1篇
  2022年   7篇
  2021年   16篇
  2020年   7篇
  2019年   10篇
  2018年   15篇
  2017年   8篇
  2016年   9篇
  2015年   7篇
  2014年   3篇
  2013年   13篇
  2012年   5篇
  2011年   12篇
  2010年   16篇
  2009年   12篇
  2008年   16篇
  2007年   13篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   8篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1990年   2篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1979年   1篇
  1978年   4篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有234条查询结果,搜索用时 171 毫秒
161.
162.
163.
BACKGROUND: There are a number of antinutritional factors present in soybeans that exert a negative impact on the nutritional quality of the protein. Among those factors that are destroyed by heat treatment are protease inhibitors and lectins. Protease inhibitors show antinutritional effect and moreover the digestibility of the protein is limited by the presence of these antinutrients. The aims of the present study are (1) to study the effect of autoclaving on the trypsin inhibitor inactivation, nitrogen solubility and protein digestibility of defatted soy flour and (2) to study the effect of enzymatic modification on the functional properties of autoclaved soy flour. RESULTS: The solubility of the soy flour decreased with increase in autoclaving time. Partial hydrolysis of the autoclaved soy flour increased its acid solubility (pH 4.5) from 17% to 56% over a control value of 24% without affecting its functional properties. Inactivation of trypsin inhibitors improved the protein digestibility of soy flour from 25% to 95%. Particle size analysis of the autoclaved flour indicated the formation of soy protein aggregates, which resulted in poor solubility. The enzymatic modification of autoclaved soy flour resulted in its property as a good emulsifying agent with an emulsion capacity of 118 ± 4 mL. CONCLUSION: Enzymatic modification of the heat‐processed soy flour increased its solubility and other functional attributes. The increased acid solubility would be advantageous in the utilization of soy proteins in acidic foods. Thus the autoclaved and partially modified soy flour is a potential source for specific functional foods. Copyright © 2007 Society of Chemical Industry  相似文献   
164.
165.
166.
Detection of targets moving within a field of interest is a fundamental service Wireless Sensor Network (WSN) service. The WSN’s target detection performance is directly related to the placement of the sensors within the field of interest. In this paper, we address the problem of deterministic sensor deployment on the plane and in space, for the purpose of detecting mobile targets. We map the target detection problem to a line-set intersection problem and derive analytic expressions for the probability of detecting mobile targets. Compared to previous works, our mapping allows us to consider sensors with heterogeneous sensing capabilities, thus analyzing sensor networks that employ multiple sensing modalities. We show that the complexity of evaluating the target detection probability grows exponentially with the network size and, hence, derive appropriate lower and upper bounds. We also show that maximizing the lower bound on the probability for target detection on the plane and in space, is analogous to the problem of minimizing the average symbol error probability in two-dimensional and three-dimensional digital modulation schemes, respectively, over additive white Gaussian noise. These problems can be addressed using the circle packing problem for the plane, and the sphere packing problem for space. Using the analogy to digital modulation schemes, we derive sensor constellations from well known signal constellations with low average symbol error probability.
James A. RitceyEmail:
  相似文献   
167.
We investigate the problem of extending the network lifetime of a single broadcast session over wireless stationary ad hoc networks where the hosts are not mobile. We define the network lifetime as the time from network initialization to the first node failure due to battery depletion. We provide through graph theoretic approaches a polynomial-time globally optimal solution, a variant of the minimum spanning tree (MST), to the problem of maximizing the static network lifetime. We make use of this solution to develop a periodic tree update strategy for effective load balancing and show that a significant gain in network lifetime over the optimal static network lifetime can be achieved. We provide extensive comparative simulation studies on parameters such as update interval and control overhead and investigate their impact on the network lifetime. The simulation results are also compared with an upper bound to the network lifetime. A preliminary version of this paper appeared in IEEE ICC 2003 [35]. This research was funded in part by NSF grant ANI-0093187, ONR award #: N00014-04-1-0479 and Collaborative Technology Alliance (CTA) from ARL under DAAD19-01-2-0011. All statements and opinions are that of the authors and do not represent any position of the U.S government Intae Kang received his B.S. degree in physics from Seoul National University, Seoul, Korea and M.S. degree in electrical engineering from the Johns Hopkins University, Baltimore, MD. He is currently working toward the Ph.D. degree in the Department of Electrical Engineering at the University of Washington, Seattle, WA. His current research interests are in the area of ad hoc and sensor networks. In particular, he is interested in energy efficient routing, topology control, medium access control, mobility management, and modeling and performance analysis of network protocols using directional/smart antennas. Radha Poovendran has been an assistant professor at the Electrical Engineering Department of the University of Washington at Seattle since September 2000. He received his Ph.D. in Electrical Engineering from the University of Maryland, College Park in 1999. His research interests are in the areas of applied cryptography for multiuser environment, wireless networking, and applications of Information Theory to security. He is a recipient of Faculty Early Career Award from the National Science Foundation (2001), Young Investigator Award from the Army Research Office (2002), Young Investigator Award from the Office of Naval Research (2004), and the 2004 Presidential Early Career Award for Scientists and Engineers, for his research contributions in the areas of wired and wireless multiuser security. He is also a co-recipient of the 2002 Outstanding Teaching as well as the Outstanding Advisor Awards from the Department of Electrical Engineering of the University of Washington.  相似文献   
168.
As group-oriented services become the focal point of ad hoc network applications, securing the group communications becomes a default requirement. In this paper, we address the problem of group access in secure multicast communications for wireless ad hoc networks. We argue that energy expenditure is a scarce resource for the energy-limited ad hoc network devices and introduce a cross-layer approach for designing energy-efficient, balanced key distribution trees to perform key management. To conserve energy, we incorporate the network topology (node location), the “power proximity” between network nodes and the path loss characteristics of the medium in the key distribution tree design. We develop new algorithms for homogeneous as well as heterogeneous environments and derive their computational complexity. We present simulation studies showing the improvements achieved for three different but common environments of interest, thus illustrating the need for cross-layer design approaches for security in wireless networks. Loukas Lazos received the B.S. and M.S. degrees from the Electrical Engineering Department, National Technical University of Athens, Athens, Greece, in 2000 and 2002, respectively. He is currently working towards the Ph.D. degree in the Electrical Engineering Department, University of Washington, Seattle. His current research interests focus on cross-layer designs for energy-efficient key management protocols for wireless ad-hoc networks, as well as secure localization systems for sensor networks. Radha Poovendran received the Ph.D. degree in electrical engineering from the University of Maryland, College Park, in 1999. He has been an Assistant Professor in the Electrical Engineering Department, University of Washington, Seattle, since September 2000. His research interests are in the areas of applied cryptography for multiuser environment, wireless networking, and applications of information theory to security. Dr. Poovendran is a recipient of the Faculty Early Career Award from the National Science Foundation (2001), Young Investigator Award from the Army Research Office (2002), Young Investigator Award from the Office of Naval Research (2004), and the 2005 Presidential Early Career Award for Scientists and Engineers, for his research contributions in the areas of wired and wireless multiuser security.  相似文献   
169.
Wireless ad hoc networks are envisioned to be randomly deployed in versatile and potentially hostile environments. Hence, providing secure and uninterrupted communication between the un-tethered network nodes becomes a critical problem. In this paper, we investigate the wormhole attack in wireless ad hoc networks, an attack that can disrupt vital network functions such as routing. In the wormhole attack, the adversary establishes a low-latency unidirectional or bi-directional link, such as a wired or long-range wireless link, between two points in the network that are not within communication range of each other. The attacker then records one or more messages at one end of the link, tunnels them via the link to the other end, and replays them into the network in a timely manner. The wormhole attack is easily implemented and particularly challenging to detect, since it does not require breach of the authenticity and confidentiality of communication, or the compromise of any host. We present a graph theoretic framework for modeling wormhole links and derive the necessary and sufficient conditions for detecting and defending against wormhole attacks. Based on our framework, we show that any candidate solution preventing wormholes should construct a communication graph that is a subgraph of the geometric graph defined by the radio range of the network nodes. Making use of our framework, we propose a cryptographic mechanism based on local broadcast keys in order to prevent wormholes. Our solution does not need time synchronization or time measurement, requires only a small fraction of the nodes to know their location, and is decentralized. Hence, it is suitable for networks with the most stringent constraints such as sensor networks. Finally, we believe our work is the first to provide an analytical evaluation in terms of probabilities of the extent to which a method prevents wormholes. Radha Poovendran received the Ph.D. degree in electrical engineering from the University of Maryland, College Park, in 1999. He has been an Assistant Professor in the Electrical Engineering Department, University of Washington, Seattle, since September 2000. His research interests are in the areas of applied cryptography for multiuser environment, wireless networking, and applications of information theory to security. Dr. Poovendran is a recipient of the Faculty Early Career Award from the National Science Foundation (2001), Young Investigator Award from the Army Research Office (2002), Young Investigator Award from the Office of Naval Research (2004), and the 2005 Presidential Early Career Award for Scientists and Engineers, for his research contributions in the areas of wired and wireless multiuser security. Loukas Lazos received the B.S. and M.S. degrees from the Electrical Engineering Department, National Technical University of Athens, Athens, Greece, in 2000 and 2002, respectively. He is currently working towards the Ph.D. degree in the Electrical Engineering Department, University of Washington, Seattle. His current research interests focus on cross-layer designs for energy-efficient key management protocols for wireless ad-hoc networks, as well as secure localization systems for sensor networks.  相似文献   
170.
The influence of neutral detergent fibre from Bengal gram on the utilisation of protein in albino rats was studied. Four market samples of Bengal gram and Bengal gram Annegeri variety harvested at three different stages of maturity were used for the study. The legumes were first analysed for proximate principles and then used as the source of nitrogen and fibre in the rat diets. Their proximate composition was similar to the values reported in literature. The content of neutral detergent fibre increased with increasing crude fibre. Growth of weanling rats was assessed on the basis of protein efficiency ratio (PER). Digestibility coefficient (DC), biological value (BV), total nitrogen retention (TNR) and net protein utilisation (NPU) were determined. PER, NPU, DC and nitrogen retention decreased with increase in fibre content in the diet. PER of Bengal gram sample with 14% neutral detergent fibre (NDF) was significantly different from the PER of all other samples. Biological value, however, was not affected by the fibre content.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号