首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   12篇
电工技术   4篇
化学工业   62篇
机械仪表   2篇
建筑科学   7篇
能源动力   3篇
轻工业   30篇
水利工程   1篇
无线电   38篇
一般工业技术   39篇
冶金工业   10篇
原子能技术   1篇
自动化技术   40篇
  2024年   1篇
  2023年   1篇
  2022年   9篇
  2021年   16篇
  2020年   7篇
  2019年   10篇
  2018年   15篇
  2017年   8篇
  2016年   9篇
  2015年   7篇
  2014年   3篇
  2013年   13篇
  2012年   5篇
  2011年   12篇
  2010年   16篇
  2009年   12篇
  2008年   16篇
  2007年   13篇
  2006年   7篇
  2005年   6篇
  2004年   4篇
  2003年   5篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   8篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1990年   2篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1979年   1篇
  1978年   4篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
181.
Here, we discuss the influence of higher-order nonlinear effects like third-order dispersion, intra-pulse Raman scattering, and self-steepening effects on 1-ps soliton pulse shift or displacement from its initial position. The temporal shifts of soliton due to these higher-order nonlinear effects were studied numerically by “Method of Moments” to realize the contribution of these HOE on shifts. Further, we note the influence of positive and negative TOD on the shift produced by the combined HOE. The soliton shift is then analyzed in 160-Gbps telecommunication system implemented with conventional single-mode fiber (C-SMF) for the length 10 and 20 km. The disturbances between the adjacent soliton pulses in noted with different 16-bit data sequences, and the deterioration of system is characterized in terms of quality factor. It could be seen for an unchirped soliton of pulsewidth \(T_{\mathrm{o}}\sim 1\hbox {ps}\), the shift is highly influenced due to intra-pulse Raman scattering, while the shifting due to third-order dispersion can be treated negligibly small. Moreover, negative TOD was expected to inhibit the soliton temporal shift such that it would reduce collision with adjacent pulses; it results in more resonant radiation resulting in pulse decaying. Although negative TOD helps in good reception of pulses for 10 km, it fails to perform in system with 20 km C-SMF, where the dispersive components break more and more while traveling along the length of fiber.  相似文献   
182.
Electroencephalogram (EEG) and its sub-bands represent electrical pattern of human brain. EEG signal contains transient components, spikes, and different types of artifacts due to eye blinking, movement of the person, anxiety, and so forth, during EEG capture. Wavelet transforms are powerful mathematical tool for sampling approximation to get clean EEG. It also helps in filtering, sampling, interpolation, noise reduction, signal approximation and signal enhancement, and feature extraction. In this paper, we have analyzed artifact cleaning via PSD graphs and statistical features extracted from motor imagery EEG-like standard deviation variance. For this, we considered 19 channels EEG signal and applied orthogonal Daubechies wavelet, bi-orthogonal rbio wavelet and Coifman wavelets to check the better performance of different wavelets. Coifman wavelet uses both scaling function and vanishing moments for sampling approximation and hence give smooth sampling compared to rbio and Daubechies wavelet transforms. Coif is a compactly supported wavelet system which also helps in smooth sampling approximations than other wavelets in the state of arts. The detailed coefficients and approximate coefficients can be further used for extracting features from EEG and classification purposes. Artifacts cleaning is thus observed better in coif wavelet analysis compared to other wavelets from the power distributions as power spectral density (PSD) graphs, standard deviation and variance obtained. Matlab R2013b is used for filtering and sampling EEG. Python 2.7 is used for statistical features extraction.  相似文献   
183.
BACKGROUND: There are a number of antinutritional factors present in soybeans that exert a negative impact on the nutritional quality of the protein. Among those factors that are destroyed by heat treatment are protease inhibitors and lectins. Protease inhibitors show antinutritional effect and moreover the digestibility of the protein is limited by the presence of these antinutrients. The aims of the present study are (1) to study the effect of autoclaving on the trypsin inhibitor inactivation, nitrogen solubility and protein digestibility of defatted soy flour and (2) to study the effect of enzymatic modification on the functional properties of autoclaved soy flour. RESULTS: The solubility of the soy flour decreased with increase in autoclaving time. Partial hydrolysis of the autoclaved soy flour increased its acid solubility (pH 4.5) from 17% to 56% over a control value of 24% without affecting its functional properties. Inactivation of trypsin inhibitors improved the protein digestibility of soy flour from 25% to 95%. Particle size analysis of the autoclaved flour indicated the formation of soy protein aggregates, which resulted in poor solubility. The enzymatic modification of autoclaved soy flour resulted in its property as a good emulsifying agent with an emulsion capacity of 118 ± 4 mL. CONCLUSION: Enzymatic modification of the heat‐processed soy flour increased its solubility and other functional attributes. The increased acid solubility would be advantageous in the utilization of soy proteins in acidic foods. Thus the autoclaved and partially modified soy flour is a potential source for specific functional foods. Copyright © 2007 Society of Chemical Industry  相似文献   
184.
185.
186.
ABSTRACT

Metal-organic frameworks (MOFs) have recently attracted enormous interest over the past few years in energy storage and gas separation, yet there have been few reports for adsorption cooling applications. Adsorption cooling technology is an established alternative to mechanical vapor compression refrigeration systems and is an excellent alternative in industrial environments where waste heat is available. We explored the use of MOFs that have very high mass loading and relatively low heats of adsorption, with certain combinations of refrigerants to demonstrate a new type of highly efficient adsorption chiller. Computational fluid dynamics combined with a system level lumped-parameter model have been used to project size and performance for chillers with a cooling capacity ranging from a few kW to several thousand kW. These systems rely on stacked micro/mini-scale architectures to enhance heat and mass transfer. Recent computational studies of an adsorption chiller based on MOFs suggests that a thermally-driven coefficient of performance greater than one may be possible, which would represent a fundamental breakthrough in performance of adsorption chiller technology. Presented herein are computational and experimental results for hydrophyilic and fluorophilic MOFs.  相似文献   
187.
(1) Background: Soyasapogenol C (SSC), a derivative of soyasapogenol B (SSB), is specifically found high in many fermented soybean (Glycine max) products, including Cheonggukjang (in Korean). However, the biological activities for preventing and treating hepatic steatosis, and the precise underlying mechanisms of SSC, remain to be explored. (2) Methods: A novel SANDA (structural screening, ADMET prediction, network pharmacology, docking validation, and activity evaluation) methodology was used to examine whether SSC exerts hepatoprotective effects in silico and in vitro. (3) Results: SSC had better ADMET characteristics and a higher binding affinity with predicted targets chosen from network pathway analysis than SSB. SSC induced the phosphorylation of AMP-activated protein kinase (AMPK) and stimulated the nuclear translocation of peroxisome proliferator-activated receptor alpha (PPARα), further enhancing PPAR response element (PPRE) binding activity in HepG2 cells. Concurrently, SSC significantly inhibited triglyceride accumulation, which was associated with the suppression of lipogenesis genes and the enhancement of fatty acid oxidation gene expression in HepG2 cells. (4) Conclusions: Soyasapogenol C, discovered using a novel SANDA methodology from fermented soybean, is a novel AMPK/PPARα dual activator that is effective against hepatic steatosis. Dietary supplementation with soyasapogenol C may prevent the development of hepatic steatosis and other diseases associated with fat accumulation in the liver.  相似文献   
188.
Hexagonal and triangular Au microplates extending over an area of ?12,000 ?m2 with thickness in the range 30–1000 nm have been synthesized using a single step thermolysis of (AuCl4)?-tetraoctylammonium bromide complex in air. The microplates are self-supporting and can be easily manipulated using a sharp pin, a property which enables them to serve as substrates for living cells. The microplate surface is non-toxic to living cells and can enhance the fluorescence signal from fluorophores residing within the cell by an order of magnitude. In addition, the microplates are smooth and single-crystalline, and ideal as microscopy substrates and molecular electrodes. The growth of the microplates in the initial stages is interesting in that they seem to grow perpendicular to the substrate, as evidenced by in situ microscopy. Open image in new window  相似文献   
189.
Nano‐sized (i) N‐doped sodium trititanate and (ii) N and Cu2+ (Ag+) co‐doped sodium trititanates CuTi3NO6?x (Ag2Ti3NO6?x) were prepared by a solid‐state and ion‐exchange methods, respectively. The materials were characterized by EDS, PXRD, XPS, FESEM, TEM, UV–visible DRS, and Raman spectroscopy. All the materials were crystallized in monoclinic lattice with P21/m space group. The bandgap energy of all the samples was deduced from their UV–visible DRS profiles. Visible‐light‐induced photocatalytic oxidation of the methylene blue (MB) and methyl orange (MO), cyclohexene and phenol, was examined. The Ag+ co‐doped trititanate exhibited the highest photocatalytic activity among the materials investigated.  相似文献   
190.
Rev1 is a protein scaffold of the translesion synthesis (TLS) pathway, which employs low-fidelity DNA polymerases for replication of damaged DNA. The TLS pathway helps cancers tolerate DNA damage induced by genotoxic chemotherapy, and increases mutagenesis in tumors, thus accelerating the onset of chemoresistance. TLS inhibitors have emerged as potential adjuvant drugs to enhance the efficacy of first-line chemotherapy, with the majority of reported inhibitors targeting protein-protein interactions (PPIs) of the Rev1 C-terminal domain (Rev1-CT). We previously identified phenazopyridine (PAP) as a scaffold to disrupt Rev1-CT PPIs with Rev1-interacting regions (RIRs) of TLS polymerases. To explore the structure-activity relationships for this scaffold, we developed a protocol for co-crystallization of compounds that target the RIR binding site on Rev1-CT with a triple Rev1-CT/Rev7R124A/Rev3-RBM1 complex, and solved an X-ray crystal structure of Rev1-CT bound to the most potent PAP analogue. The structure revealed an unexpected binding pose of the compound and informed changes to the scaffold to improve its affinity for Rev1-CT. We synthesized eight additional PAP derivatives, with modifications to the scaffold driven by the structure, and evaluated their binding to Rev1-CT by microscale thermophoresis (MST). Several second-generation PAP derivatives showed an affinity for Rev1-CT that was improved by over an order of magnitude, thereby validating the structure-based assumptions that went into the compound design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号