首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1717篇
  免费   98篇
电工技术   6篇
化学工业   780篇
金属工艺   13篇
机械仪表   38篇
建筑科学   55篇
能源动力   48篇
轻工业   284篇
水利工程   13篇
石油天然气   3篇
无线电   52篇
一般工业技术   199篇
冶金工业   75篇
原子能技术   12篇
自动化技术   237篇
  2024年   2篇
  2023年   26篇
  2022年   159篇
  2021年   185篇
  2020年   57篇
  2019年   50篇
  2018年   38篇
  2017年   44篇
  2016年   70篇
  2015年   64篇
  2014年   60篇
  2013年   127篇
  2012年   95篇
  2011年   124篇
  2010年   77篇
  2009年   80篇
  2008年   104篇
  2007年   63篇
  2006年   35篇
  2005年   48篇
  2004年   34篇
  2003年   36篇
  2002年   30篇
  2001年   16篇
  2000年   17篇
  1999年   23篇
  1998年   28篇
  1997年   15篇
  1996年   17篇
  1995年   11篇
  1994年   11篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1815条查询结果,搜索用时 31 毫秒
51.
DNA microarrays and RNA-based sequencing approaches are considered important discovery tools in clinical medicine. However, cross-platform reproducibility studies undertaken so far have highlighted that microarrays are not able to accurately measure gene expression, particularly when they are expressed at low levels. Here, we consider the employment of a digital PCR assay (ddPCR) to validate a gene signature previously identified by gene expression profile. This signature included ten Hedgehog (HH) pathways’ genes able to stratify multiple myeloma (MM) patients according to their self-renewal status. Results show that the designed assay is able to validate gene expression data, both in a retrospective as well as in a prospective cohort. In addition, the plasma cells’ differentiation status determined by ddPCR was further confirmed by other techniques, such as flow cytometry, allowing the identification of patients with immature plasma cells’ phenotype (i.e., expressing CD19+/CD81+ markers) upregulating HH genes, as compared to others, whose plasma cells lose the expression of these markers and were more differentiated. To our knowledge, this is the first technical report of gene expression data validation by ddPCR instead of classical qPCR. This approach permitted the identification of a Maturation Index through the integration of molecular and phenotypic data, able to possibly define upfront the differentiation status of MM patients that would be clinically relevant in the future.  相似文献   
52.
In recent years, the knowledge about the immune-mediated impairment of bone marrow precursors in immune-dysregulation and autoimmune disorders has increased. In addition, immune-dysregulation, secondary to marrow failure, has been reported as being, in some cases, the most evident and early sign of the disease and making the diagnosis of both groups of disorders challenging. Dyskeratosis congenita is a disorder characterized by premature telomere erosion, typically showing marrow failure, nail dystrophy and leukoplakia, although incomplete genetic penetrance and phenotypes with immune-dysregulation features have been described. We report on a previously healthy 17-year-old girl, with a cousin successfully treated for acute lymphoblastic leukemia, who presented with leukopenia and neutropenia. The diagnostic work-up showed positive anti-neutrophil antibodies, leading to the diagnosis of autoimmune neutropenia, a slightly low NK count and high TCR-αβ+-double-negative T-cells. A next-generation sequencing (NGS) analysis showed the 734C>A variant on exon 6 of the TINF2 gene, leading to the p.Ser245Tyr. The telomere length was short on the lymphocytes and granulocytes, suggesting the diagnosis of an atypical telomeropathy showing with immune-dysregulation. This case underlines the importance of an accurate diagnostic work-up of patients with immune-dysregulation, who should undergo NGS or whole exome sequencing to identify specific disorders that deserve targeted follow-up and treatment.  相似文献   
53.
54.
The Wnt/β-catenin signaling pathway dictates cell proliferation and differentiation during embryonic development and tissue homeostasis. Its deregulation is associated with many pathological conditions, including neurodegenerative disease, frequently downregulated. The lack of efficient treatment for these diseases, including Alzheimer’s disease (AD), makes Wnt signaling an attractive target for therapies. Interestingly, novel Wnt signaling activating compounds are less frequently described than inhibitors, turning the quest for novel positive modulators even more appealing. In that sense, natural compounds are an outstanding source of potential drug leads. Here, we combine different experimental models, cell-based approaches, neuronal culture assays, and rodent behavior tests with Xenopus laevis phenotypic analysis to characterize quercitrin, a natural compound, as a novel Wnt signaling potentiator. We find that quercitrin potentiates the signaling in a concentration-dependent manner and increases the occurrence of the Xenopus secondary axis phenotype mediated by Xwnt8 injection. Using a GSK3 biosensor, we describe that quercitrin impairs GSK3 activity and increases phosphorylated GSK3β S9 levels. Treatment with XAV939, an inhibitor downstream of GSK3, impairs the quercitrin-mediated effect. Next, we show that quercitrin potentiates the Wnt3a-synaptogenic effect in hippocampal neurons in culture, which is blocked by XAV939. Quercitrin treatment also rescues the hippocampal synapse loss induced by intracerebroventricular injection of amyloid-β oligomers (AβO) in mice. Finally, quercitrin rescues AβO-mediated memory impairment, which is prevented by XAV939. Thus, our study uncovers a novel function for quercitrin as a Wnt/β-catenin signaling potentiator, describes its mechanism of action, and opens new avenues for AD treatments.  相似文献   
55.
Ovarian cancer recurrence is frequent and associated with chemoresistance, leading to extremely poor prognosis. Herein, we explored the potential anti-cancer effect of a series of highly charged Ru(II)-polypyridyl complexes as photosensitizers in photodynamic therapy (PDT), which were able to efficiently sensitize the formation of singlet oxygen upon irradiation (Ru12+ and Ru22+) and to produce reactive oxygen species (ROS) in their corresponding dinuclear metal complexes with the Fenton active Cu(II) ion/s ([CuRu1]4+ and [Cu2Ru2]6+). Their cytotoxic and anti-tumor effects were evaluated on human ovarian cancer A2780 cells both in the absence or presence of photoirradiation, respectively. All the compounds tested were well tolerated under dark conditions, whereas they switched to exert anti-tumor activity following photoirradiation. The specific effect was mediated by the onset of programed cell death, but only in the case of Ru12+ and Ru22+ was preceded by the loss of mitochondrial membrane potential soon after photoactivation and ROS production, thus supporting the occurrence of apoptosis via type II photochemical reactions. Thus, Ru(II)-polypyridyl-based photosensitizers represent challenging tools to be further investigated in the identification of new therapeutic approaches to overcome the innate chemoresistance to platinum derivatives of some ovarian epithelial cancers and to find innovative drugs for recurrent ovarian cancer.  相似文献   
56.
57.
Classical pediatric Hodgkin Lymphoma (HL) is a rare malignancy. Therapeutic regimens for its management may be optimized by establishing treatment response early on. The aim of this study was to identify plasma protein biomarkers enabling the prediction of relapse in pediatric/adolescent HL patients treated under the pediatric EuroNet-PHL-C2 trial. We used untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics at the time of diagnosis—before any therapy—as semiquantitative method to profile plasma proteins specifically associated with relapse in 42 children with nodular sclerosing HL. In both the exploratory and the validation cohorts, six proteins (apolipoprotein E, C4b-binding protein α chain, clusterin, fibrinogen γ chain, prothrombin, and vitronectin) were more abundant in the plasma of patients whose HL relapsed (|fold change| ≥ 1.2, p < 0.05, Student’s t-test). Predicting protein function with the Gene Ontology classification model, the proteins were included in four biological processes (p < 0.01). Using immunoblotting and Luminex assays, we validated two of these candidate biomarkers—C4b-binding protein α chain and clusterin—linked to innate immune response function (GO:0045087). This study identified C4b-binding protein α chain and clusterin as candidate early plasma biomarkers of HL relapse, and important for the purpose of shedding light on the molecular scenario associated with immune response in patients treated under the EuroNet-PHL-C2 trial.  相似文献   
58.
Staphylococcal exfoliative toxins (ETs) are glutamyl endopeptidases that specifically cleave the Glu381-Gly382 bond in the ectodomains of desmoglein 1 (Dsg1) via complex action mechanisms. To date, four ETs have been identified in different Staphylococcus aureus strains and ETE is the most recently characterized. The unusual properties of ETs have been attributed to a unique structural feature, i.e., the 180° flip of the carbonyl oxygen (O) of the nonconserved residue 192/186 (ETA/ETE numbering), not conducive to the oxyanion hole formation. We report the crystal structure of ETE determined at 1.61 Å resolution, in which P186(O) adopts two conformations displaying a 180° rotation. This finding, together with free energy calculations, supports the existence of a dynamic transition between the conformations under the tested conditions. Moreover, enzymatic assays showed no significant differences in the esterolytic efficiency of ETE and ETE/P186G, a mutant predicted to possess a functional oxyanion hole, thus downplaying the influence of the flip on the activity. Finally, we observed the formation of ETE homodimers in solution and the predicted homodimeric structure revealed the participation of a characteristic nonconserved loop in the interface and the partial occlusion of the protein active site, suggesting that monomerization is required for enzymatic activity.  相似文献   
59.
Platelet and coagulation activation are highly reciprocal processes driven by multi-molecular interactions. Activated platelets secrete several coagulation factors and expose phosphatidylserine, which supports the activation of coagulation factor proteins. On the other hand, the coagulation cascade generates known ligands for platelet receptors, such as thrombin and fibrin. Coagulation factor (F)Xa, (F)XIIIa and activated protein C (APC) can also bind to platelets, but the functional consequences are unclear. Here, we investigated the effects of the activated (anti)coagulation factors on platelets, other than thrombin. Multicolor flow cytometry and aggregation experiments revealed that the ‘supernatant of (hirudin-treated) coagulated plasma’ (SCP) enhanced CRP-XL-induced platelet responses, i.e., integrin αIIbβ3 activation, P-selectin exposure and aggregate formation. We demonstrated that FXIIIa in combination with APC enhanced platelet activation in solution, and separately immobilized FXIIIa and APC resulted in platelet spreading. Platelet activation by FXIIIa was inhibited by molecular blockade of glycoprotein VI (GPVI) or Syk kinase. In contrast, platelet spreading on immobilized APC was inhibited by PAR1 blockade. Immobilized, but not soluble, FXIIIa and APC also enhanced in vitro adhesion and aggregation under flow. In conclusion, in coagulation, factors other than thrombin or fibrin can induce platelet activation via GPVI and PAR receptors.  相似文献   
60.
Microtubule-targeting agents (MTAs) are effective drugs for cancer treatment. A novel diaryl [1,2]oxazole class of compounds binding the colchicine site was synthesized as cis-restricted-combretastatin-A-4-analogue and then chemically modified to have improved solubility and a wider therapeutic index as compared to vinca alkaloids and taxanes. On these bases, a new class of tricyclic compounds, containing the [1,2]oxazole ring and an isoindole moiety, has been synthetized, among which SIX2G emerged as improved MTA. Several findings highlighted the ability of some chemotherapeutics to induce immunogenic cell death (ICD), which is defined by the cell surface translocation of Calreticulin (CALR) via dissociation of the PP1/GADD34 complex. In this regard, we computationally predicted the ability of SIX2G to induce CALR exposure by interacting with the PP1 RVxF domain. We then assessed both the potential cytotoxic and immunogenic activity of SIX2G on in vitro models of multiple myeloma (MM), which is an incurable hematological malignancy characterized by an immunosuppressive milieu. We found that the treatment with SIX2G inhibited cell viability by inducing G2/M phase cell cycle arrest and apoptosis. Moreover, we observed the increase of hallmarks of ICD such as CALR exposure, ATP release and phospho-eIF2α protein level. Through co-culture experiments with immune cells, we demonstrated the increase of (i) CD86 maturation marker on dendritic cells, (ii) CD69 activation marker on cytotoxic T cells, and (iii) phagocytosis of tumor cells following treatment with SIX2G, confirming the onset of an immunogenic cascade. In conclusion, our findings provide a framework for further development of SIX2G as a new potential anti-MM agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号