The present research emphasizes the use of safe, inexpensive, and available whey using Lactobacillus paracasei as a source in silver nanocomposite synthesis as an alternative bioactive agent for dairy and biomedical applications. Through the multiinstrumental approach used in this study based on spectroscopic and microscopic methods as well as spectrometric techniques, the characterization and evaluation of silver composites and their antimicrobial and antiradical properties were enabled. Synthesized silver nanocomposites have been found in form of nanocrystals, naturally coated by an organic surface with high antimicrobial and antiradical properties. Furthermore, this work also presents an innovative approach regarding the organic surface (naturally secreted by the bacteria isolated from whey) of the core of nanoparticles, which has already been explored and therefore is starting to supplement the scientific approach concerning biologically synthesized nanoparticles. This work also presents a general frame on the resistance subject by performing the trial interaction of commercially available antibiotics (kanamycin and ampicillin) with new bioactive compounds that can create novel knowledge on complementing their action. Moreover, synthesized silver nanocomposites have shown great antioxidant and antimicrobial effects against various foodborne pathogens from dairy products and drug resistance pathogens found in the medical area to rank on the top of mortality rate. 相似文献
We have compared the results of estimations of the total number of protein-coding genes in the Saccharomyces cerevisiae genome, which have been obtained by many laboratories since the yeast genome sequence was published in 1996. We propose that there are 5300-5400 genes in the genome. This makes the first estimation of the number of intronless ORFs longer than 100 codons, based on the features of the set of genes with phenotypes known in 1997 to be correct. This estimation assumed that the set of the first 2300 genes with known phenotypes was representative for the whole set of protein-coding genes in the genome. The same method used in this paper for the approximation of the total number of protein-coding sequences among more than 40 000 ORFs longer than 20 codons gives a result that is only slightly higher. This suggests that there are still some non-coding ORFs in the databases and a few dozen small ORFs, not yet annotated, which probably code for proteins. 相似文献
Engineered nanoparticles, due to their unique electrical, mechanical, and catalytic properties, are presently found in many commercial products and will be intentionally or inadvertently released at increasing concentrations into the natural environment. Metal- and metal oxide-based nanomaterials have been shown to act as mediators of DNA damage in mammalian cells, organisms, and even in bacteria, but the molecular mechanisms through which this occurs are poorly understood. For the first time, we report that copper oxide nanoparticles induce DNA damage in agricultural and grassland plants. Significant accumulation of oxidatively modified, mutagenic DNA lesions (7,8-dihydro-8-oxoguanine; 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 4,6-diamino-5-formamidopyrimidine) and strong plant growth inhibition were observed for radish (Raphanus sativus), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium rigidum) under controlled laboratory conditions. Lesion accumulation levels mediated by copper ions and macroscale copper particles were measured in tandem to clarify the mechanisms of DNA damage. To our knowledge, this is the first evidence of multiple DNA lesion formation and accumulation in plants. These findings provide impetus for future investigations on nanoparticle-mediated DNA damage and repair mechanisms in plants. 相似文献
The elemental composition of honey is correlated with the botanical provenience of nectar, pollen, and honeydew that are collected and ripened by bees. In addition to this, the geographical origin related to the locality of an apiary, the soil composition, and climatic conditions may contribute to the origin of elements in honey. The environmental pollution or other anthropogenic processes and activities also have an effect on the quality and the safety of honey since they may be accompanying sources that lead to its contamination and the presence of various trace elements (Cd, Cr, Cu, Fe, Ni, Pb, and Zn). This review article covers the literature devoted to the analysis of honey carried out by the most popular and commonly utilized flame atomic absorption and emission spectrometry, which was published from 1999 to 2011. Various aspects of such analysis are treated in detail, including ways of the sample preparation, the calibration, and the quality assurance of results. In addition, methods and results related to the fractionation analysis of elements in honey by means of chromatographic and non-chromatographic approaches are described. 相似文献
The highly enantioselective organo‐co‐catalytic aza‐Morita–Baylis–Hillman (MBH)‐type reaction between N‐carbamate‐protected imines and α,β‐unsaturated aldehydes has been developed. The organic co‐catalytic system of proline and 1,4‐diazabicyclo[2.2.2]octane (DABCO) enables the asymmetric synthesis of the corresponding N‐Boc‐ and N‐Cbz‐protected β‐amino‐α‐alkylidene‐aldehydes in good to high yields and up to 99% ee. In the case of aza‐MBH‐type addition of enals to phenylprop‐2‐ene‐1‐imines, the co‐catalytic reaction exhibits excellent 1,2‐selectivity. The organo‐co‐catalytic aza‐MBH‐type reaction can also be performed by the direct highly enantioselective addition of α,β‐unsaturated aldehydes to bench‐stable N‐carbamate‐protected α‐amidosulfones to give the corresponding β‐amino‐α‐alkylidene‐aldehydes with up to 99% ee. The organo‐co‐catalytic aza‐MBH‐type reaction is also an expeditious entry to nearly enantiomerically pure β‐amino‐α‐alkylidene‐amino acids and β‐amino‐α‐alkylidene‐lactams (99% ee). The mechanism and stereochemistry of the chiral amine and DABCO co‐catalyzed aza‐MBH‐type reaction are also discussed. 相似文献
The paper presents a method of settling time minimization in switched capacitor (SC) circuits. This problem has been discussed in recent papers because of high-frequency applications of SC networks. In comparison with the methods elaborated up to now and limited to biquads, the method presented in this paper can be used for an SC circuit containing an arbitrary number of operational amplifiers coupled together in each switching state and modelled as ideal transconductances. the fifth-order ladder bilinear SC filter is considered for illustration of the method and SPICE simulations. 相似文献
A promising catalytic system for the low temperature oxidation of methane to a methanol derivative has been investigated under both batch and semi-continuous operation in two different reactor types. The system comprises of a bimetallic palladium and copper(II) chloride catalyst contained in a trifluoroacetic acid (TFA) and an aqueous phase. Methane, oxygen and a co-reductant carbon monoxide constitute the gas phase. Typical operating conditions were a temperature of 85 °C and a pressure of 83 bar.
The yields of the methyl trifluoroacetate product observed in this present work were less than those obtained in other batch autoclave works, which employed only 4 ml of liquid phase, compared with 50 ml in this study. Furthermore, an encouraging initial product formation rate of ca. 40 mol/m3 h, quickly decreased after the first hour, and came to an apparent end after only 2 h. This observation had not been reported previously.
Work performed in a semi-continuous porous tube reactor (300 ml of re-circulating liquid phase) also showed the same reaction characteristics as in the batch reactor. Thus, the deteriorating product formation rate cannot be attributed to gaseous reactant depletion (batch operation). The results suggest problems associated with catalyst instabilities, e.g. with the previously elucidated Wacker chemistry. 相似文献