首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   11篇
  国内免费   1篇
电工技术   4篇
化学工业   26篇
金属工艺   7篇
机械仪表   4篇
能源动力   1篇
轻工业   4篇
水利工程   2篇
无线电   8篇
一般工业技术   20篇
冶金工业   40篇
原子能技术   2篇
自动化技术   5篇
  2024年   1篇
  2023年   1篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   5篇
  2008年   4篇
  2007年   1篇
  2006年   7篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1998年   10篇
  1997年   10篇
  1996年   1篇
  1995年   6篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   2篇
  1976年   2篇
  1972年   2篇
  1970年   2篇
  1956年   1篇
  1955年   1篇
排序方式: 共有123条查询结果,搜索用时 31 毫秒
31.
The quality of aerosol‐produced nanopowders can be impaired by micron‐sized particles formed due to non‐uniform process conditions. Methods to evaluate the quality reliably and fast, preferably on‐line, are important at industrial scales. Here, aerosol analysis methods are used to determine the fractions of nanoparticles and micron‐sized residuals from poorly volatile precursors. This is accomplished using aerosol instruments to measure the number and mass size distributions of Liquid Flame Spray‐generated alumina and silver particles produced from metal nitrates dissolved in ethanol and 2‐ethylhexanoic acid (EHA). The addition of EHA had no effect on silver, whereas, 5% EHA concentration was enough to shift the alumina mass from the residuals to nanoparticles. The size‐resolved aerosol analysis proved to be an effective method for determining the product quality. Moreover, the used on‐line techniques alone can be used to evaluate the process output when producing nanopowders, reducing the need for tedious off‐line analyses. © 2016 American Institute of Chemical Engineers AIChE J, 63: 881–892, 2017  相似文献   
32.
The first magnetic ceramic composites manufactured, using the room‐temperature densification method are reported. The samples were prepared at room temperature using Li2MoO4 as a matrix and MnZn ferrite with loading levels of 10‐30 vol‐% followed by postprocessing at 120°C. The method utilizes the water solubility of the dielectric Li2MoO4 and compression pressure instead of high temperatures typical of conventional solid‐state sintering. Hence, composite manufacturing using temperature‐ and atmosphere‐sensitive materials is possible without special conditions. This was demonstrated with MnZn ferrite, which is prone to oxidation when heat treated in air. Samples manufactured with room‐temperature densification showed no signs of reactivity during processing, whereas reference samples sintered at 685°C suffered from oxidation and formation of an additional reaction phase. The densities achieved with different loading levels of MnZn ferrite with both methods were very similar. Measurements up to 1 GHz showed relatively high values of relative permittivity (21.7 at 1 GHz) and permeability (2.6 at 1 GHz) with 30 vol‐% loading of MnZn ferrite in the samples manufactured by room‐temperature densification. In addition, pre‐granulation is proposed to improve the processability of the composite powders in room‐temperature densification.  相似文献   
33.
34.
35.
In this work, ceramic–polymer composites were fabricated from barium strontium titanate powder (BST) and polypropylene-graft-poly(styrene-stat-divinylbenzene) (ER) using a twin-screw extruder. The compounding process was characterized by rheological measurements. The effects of volume loading of BST on dielectric and mechanical properties were investigated. The dielectric properties were measured as a function of frequency and BST loading. For example, the relative permittivity and loss tangent (tan δ) of the BST–ER composites at 1 GHz were gradually increased from 2.4 and 0.0001 to 28.5 and 0.0085, respectively, as the loading was increased from 0 to 50.5 vol.%. Stearic acid (StA) was used as a surface-modifier of the BST. With an approximate surface coverage of 83%, an improvement in processability and a slight increase of the permittivity was observed, while tan δ remained low. The excellent dielectric characteristics of these composites, with high permittivity and low tan δ, make them attractive novel electronic materials for high frequency applications.  相似文献   
36.
Bulk aligned multi-walled carbon nanotube films and their epoxy composites were prepared and their DC and AC conductivity studied. Nanotube films of up to 2 mm thickness were grown by catalytic chemical vapor deposition. Composites of nanotubes were made by infiltrating the films with a commercial epoxy. DC electrical resistivities in the axial direction of as-grown and purified films were found to be ∼1.2 Ωmm and ∼3.4 Ωmm, respectively. For the transverse direction the resistivity values were higher only with a factor of ∼2. In the case of composites, anisotropy is more pronounced showing more than an order of magnitude higher resistivity in the transverse direction (∼71.4 Ωmm) as compared to the axial value (∼4.2 Ωmm). AC behavior of the films investigated between 1 MHz and 3 GHz shows the presence of inductive and capacitive components at frequencies above ∼100 MHz. The moderate anisotropy for both DC and AC electrical properties are explained on the basis of the films’ structure combined with percolation theory and equivalent circuit models.  相似文献   
37.
The cortical pathology in Alzheimer's disease (AD) should lead to the loss of effective interaction between distinct neocortical areas. This study compared 2 conditions within a single sensory integration task that differed in the demands placed on effective cross-cortical interaction. AD patients were impaired in their ability to bind distinct visual features of a stimulus when this binding placed greater demands on cross-cortical interaction (i.e., motion and color) but were not impaired when this binding placed lesser demands on such interaction (i.e., motion and luminance). In contrast, neurologically intact individuals and patients with Huntington's disease were able to effectively bind features under both conditions. These results provide psychophysical support for the presence of functional disconnectivity in AD and demonstrate the utility of AD for investigating the neurocognitive substrates of sensory integration. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   
38.
39.
Oxidation phenomena on Laves phase forming Ti–Nb stabilized ferritic stainless steel (EN 1.4509) were studied at 650 °C by electron microscopic and electron spectroscopic methods. These investigations reveal a strong competition between Nb and Si for interfacial oxidation at the oxide–metal interface that is affected by different segregation rates of Nb and Si at elevated temperatures. In particular, formation of Si containing Laves (FeNbSi)-type intermetallic compounds in the bulk results in non-uniform distribution of Si oxide at the interface. This has direct implications to the electrical properties of this alloy in solid oxide fuel cell (SOFC) applications. Furthermore, these results provide better understanding to the controversial role of second phases (e.g. Laves, chi) on high-temperature oxidation (as recently discussed by Dae Won Yon, Hyung Suk Seo, Jae Ho Jun, Jae Myung Lee, Do Hyuong Kim, Kyoo Young Kim in Int J Hydrogen Energy 2011;36:5595–5603).  相似文献   
40.
Dielectric properties of lithium molybdate disks fabricated by moistening water‐soluble Li2MoO4 powder, compressing it, and postprocessing the samples at 120°C, were improved by the optimization of powder particle size, sample pressing pressure, and postprocessing time. It appeared that the postprocessing temperature of the Li2MoO4 ceramics could be chosen so as to be applicable to the associated integrated materials as long as the postprocessing time was adequately adjusted to ensure the removal of the residual water. In addition, the dielectric properties of Li2MoO4 ceramic were modified with an inclusion of suitable additives. For example, at 1 GHz the relative permittivity of Li2MoO4 disks fabricated at room temperature and postprocessed at 120°C was increased from 6.4 to 8.8 with an addition of 10 vol% of rutile TiO2 and to 9.7 with an addition of 10 vol% of BaTiO3. At the same time the loss tangent value increased from 0.0006 to 0.0014 and to 0.011, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号