首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105463篇
  免费   1737篇
  国内免费   485篇
电工技术   1046篇
综合类   2354篇
化学工业   16362篇
金属工艺   5194篇
机械仪表   3455篇
建筑科学   3876篇
矿业工程   718篇
能源动力   1784篇
轻工业   5661篇
水利工程   1443篇
石油天然气   397篇
武器工业   1篇
无线电   10650篇
一般工业技术   20241篇
冶金工业   5320篇
原子能技术   390篇
自动化技术   28793篇
  2023年   181篇
  2022年   316篇
  2021年   584篇
  2020年   352篇
  2019年   330篇
  2018年   14806篇
  2017年   13680篇
  2016年   10380篇
  2015年   1075篇
  2014年   903篇
  2013年   1686篇
  2012年   4173篇
  2011年   10766篇
  2010年   9237篇
  2009年   6491篇
  2008年   7905篇
  2007年   8752篇
  2006年   1043篇
  2005年   2044篇
  2004年   1876篇
  2003年   1835篇
  2002年   1179篇
  2001年   484篇
  2000年   545篇
  1999年   464篇
  1998年   458篇
  1997年   397篇
  1996年   384篇
  1995年   302篇
  1994年   311篇
  1993年   305篇
  1992年   260篇
  1991年   234篇
  1990年   201篇
  1989年   230篇
  1988年   193篇
  1987年   177篇
  1986年   174篇
  1985年   239篇
  1984年   214篇
  1983年   184篇
  1982年   168篇
  1981年   195篇
  1980年   131篇
  1979年   147篇
  1978年   143篇
  1977年   127篇
  1976年   138篇
  1975年   120篇
  1974年   105篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
In this study, we proposed an efficient method for mass production of high-filling-efficiency microfluidic devices. Precision machining was the main process of device fabrication. The commercially available SolidWorks software was adopted for structure design. Unigraphics software was then used to simulate the machining process. The simulated tooling file was then loaded into a CNC milling machine for mold production. The fabricated metal mold was used for pouring polydimethylsiloxane (PDMS) to obtain high-filling-efficiency microfluidic structures. Finally, plasma-assisted packaging was conducted to tightly bind the PDMS microfluidic structure to the glass substrate. Experimental results showed that the additional semicircular filling structure and expended fill-entry structure can efficiently enhance filling efficiency of the microchannel device. The incubation well array can be completely filled at a relatively short filling time. The proposed highly efficient filling microfluidic device possesses advantages, such as feasibility for mass production and cost effectiveness.  相似文献   
32.
In the industrial manufacturing field, machining is a major process. Machining operations involve grinding, drilling, milling, turning, pressing, molding, and so on. Among these operations, grinding is the most precise and complicated process. The surface condition of the grinding wheel plays an important role in grinding performance, and the identification of grinding wheel loading phenomena during the grinding process is critical. Accordingly, this present study describes a measurement method based on the acoustic emission (AE) technique to characterize the loading phenomena of a Si2O3 grinding wheel for the grinding mass production process. The proposed measurement method combines the process-integrated measurement of AE signals, offline digital image processing, and surface roughness measurement of the ground workpieces for the evaluation of grinding wheel loading phenomena. The experimental results show that the proposed measurement method provides a quantitative index from the AE signals to evaluate the grinding wheel loading phenomena online for the grinding mass production process, and this quantitative index is determined via some experiments in advance in the same grinding environment to help the monitoring and controlling of the grinding process.  相似文献   
33.
A manufacturing system comprises production processes and building services, both of which are supplied by different energy carriers as well as raw materials and water. These resources interact according to complex relationships and are converted into products for sale and waste flows. Holistic resource accounting allows the analyst to consider the dynamic relationships between these components, including the strong interdependence between energy and water, which has been called the energy-water nexus. Exergy analysis is a method that accounts for mass and both the quantity and quality of energy, while allowing analysis on a common basis, and for this reason, it is used increasingly to analyse resource consumption in manufacturing systems; however, it has rarely been used to consider water flows alongside energy and material flows. The main contribution of this paper is the presentation of modelling water flows in terms of exergy in the context of sustainable manufacturing. Using this technique in combination with previously developed exergy-based methods, the result is a truly holistic resource accounting method for factories based on exergy analysis that incorporates water flows. The method is illustrated using a case study of a food factory in which a 4.1% reduction in resource use is shown to be possible by employing anaerobic digester in an effluent water treatment process. The benefits of this technology option would have been underestimated compared to the benefits of waste heat capture if an analysis based on mass and energy balances alone had been used. The scientific value of this paper is the demonstration of the relatively high exergy content of effluent flows, which should therefore be regarded as potentially valuable resources. The analytical method presented is therefore of value to a wide range of industries beyond the food industry.  相似文献   
34.
The accomplishment of a turning and five-axis milling in only one setup is extremely useful and is possible on a turning and milling composite machine tool. In this work, we present a control algorithm and develop a post-processor for this machine, which has six linear and three rotary axes. To calculate a generalized kinematics model, coordinate systems are established by analyzing the basic kinematic chain relation of the turning and milling composite machine tool. The two vectors, which control the motions of the cutter contact workpiece, are simultaneously transformed to provide the algorithms of the rotary angles and motion coordinate. A special post-processor written in JAVA language is developed according to the proposed algorithm. To evaluate the effectiveness and accuracy of the developed post-processor, a specimen (blade) is used in the cutting simulation and real machining experiment. Experimental results showed the effectiveness and accuracy of the proposed algorithm. Furthermore, Compatibility is improved by adding new functions such as change of target machine, cutter location data change, workpiece origin offset, and cutting feed rate control.  相似文献   
35.
Focussed ion beam milling (FIB) followed by TEM has been used to study ZDDP tribofilms on rubbed steel surfaces. It has been found that the impact of high energy platinum and gallium ions during FIB causes significant morphological and structural changes to the uppermost 30–50 nm of a ZDDP tribofilm. This can be prevented by the low energy deposition of a quite thick gold layer prior to installation of the sample in the FIB facility. This problem, and its solution, have been quite widely reported in the non-tribology literature but have not previously been highlighted in the application of FIB to study tribological surfaces. It has also been found, using this gold pre-deposition method, that the bulk of the ZDDP tribofilm studied has a polycrystalline structure.  相似文献   
36.
The tribological performance of graphene oxide (GO), graphitic carbon nitride (g-C3N4), and their mixed (g-C3N4/GO) aqueous suspensions was investigated. The 0.06 wt% GO, 0.06 wt% g-C3N4, and 0.06 wt% 1:1 g-C3N4/GO suspensions reduced the coefficient of friction (COF) by 37, 26 and 37% and wear mark radius by 19.1, 16.0 and 19.6%, respectively, in comparison with water. Pure g-C3N4 and GO suspensions showed unstable lubrication in the tests with relatively high loads and speeds, while the g-C3N4/GO mixed suspension had superior tribological performance in all tested conditions. This is because in the mixed suspension g-C3N4 agglomerates became smaller, and GO nanosheets exhibited fewer wrinkles and less stacking, which enabled the formation of a layer of tribo-composite film. As a result, the friction, wear and tribo-corrosion were reduced during sliding.  相似文献   
37.
This paper studies the nonlinear behavior of the friction-induced vibration by using spring-mass model subject to the smooth frictionvelocity curve. The nonlinearity and instability of the friction may produce the chaotic vibration depending on the friction curve. In order to show this, the Lyapunov exponents are calculated for a variety of the slope and magnitude in the smooth friction curve. In turn, the dependency of the friction curve on the chaotic attractor is illustrated.  相似文献   
38.
The advent of smart factories has resulted in the frequent utilization of industrial robots within factories to increase production automation and efficiency. Due to the increase in the number of industrial robots, it has become more important to prevent any unexpected breakdowns of the factory. As a result, the lifespan prediction of machinery has become a crucial factor because such failures can be directly associated with factory productivity resulting in significant losses. Most of the failures occur within one of the core components of the robot arm, the servo motor, and thus we will focus on the analysis of the servo motor in this study. However, sensor attachment to such equipment is considered difficult due to the dynamic movement of the robot arm, meaning that internal instrumentation should be utilized during analysis. In addition, no definite measure to determine the degradation of the motor exists, and thus a new degradation index is proposed in this study. Therefore, in this study, the lifespan of the servo motor will be estimated through accelerated degradation testing methods based on a new system degradation assessment method, which estimates the fault of the system using observer-based residuals with encoder data obtained from internal instrumentation.  相似文献   
39.
Electricity generation through fossil fuels has caused environmental pollution. Accordingly, research on new renewable energy (solar, wind, geothermal heat, etc.) to replace fossil fuels and solve this problem is in progress. These devices can consistently generate power. However, they have several drawbacks, such as high installation costs and limitations in possible set-up environments. Therefore, the piezoelectric harvesting technology, which is able to overcome the limitations of existing energy technologies, is actively being studied. The piezoelectric harvesting technology uses the piezoelectric effect, which occurs in crystals that generate voltage when stress is applied. Its advantages include a wider installation base and a lower technological cost. This study investigated a piezoelectric energy-harvesting device based on constant wave motion. This device can harvest power in a constant turbulent flow in the middle of the sea. The components of the device are circuitry, percussion bar, triple layer piezoelectric bender, bearing and rudder. A multiphysical analysis coupled with the structure and piezoelectric elements was also conducted to estimate the device performance. The analysis accuracy was improved by applying the impact energy to the bender calculated based on the shape of the wave in the East Sea. The proposed device’s performance was finally confirmed by experiments.  相似文献   
40.
We describe the performance of a drift tube-ion mobility spectrometry (DT-IMS) instrument for the measurement of aerosol particles. In DT-IMS, the electrical mobility of a measured particle is inferred directly from the time required for the particle to traverse a drift region, with motion driven by an electrostatic field. Electrical mobility distributions are hence linked to arrival time distributions (ATDs) for particles reaching a detector downstream of the drift region. The developed instrument addresses two obstacles that have limited DT-IMS use for aerosol measurement previously: (1) conventional drift tubes cannot efficiently sample charged particles at ground potential and (2) the sensitivities of commonly used Faraday plate detectors are too low for most aerosols. Obstacle (1) is circumvented by creating a “sample volume” of aerosol for measurement, defined by the streamlines of fluid flow. Obstacle (2) is bypassed by interfacing the end of the drift region with a condensation particle counter. The DT-IMS prototype shows high linearity for arrival time versus inverse electrical mobility (R 2 > 0.99) over the size range tested (2.2–11.1 nm), and measurements compare well with both analytical and numerical models of device performance. A dimensionless calibration curve linking drift time to inverse electrical mobility is developed. In less than 5 s, it is possible to measure 11.1 nm particles, while 2.2 nm particles are analyzable on a subsecond scale. The transmission efficiency is found to be dependent upon electrostatic deposition for short drift times and upon advective losses for long drift times.

Copyright 2014 American Association for Aerosol Research  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号