首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23033篇
  免费   799篇
  国内免费   82篇
电工技术   298篇
综合类   45篇
化学工业   5164篇
金属工艺   479篇
机械仪表   461篇
建筑科学   1764篇
矿业工程   160篇
能源动力   698篇
轻工业   2145篇
水利工程   186篇
石油天然气   56篇
武器工业   1篇
无线电   1504篇
一般工业技术   4204篇
冶金工业   2769篇
原子能技术   137篇
自动化技术   3843篇
  2023年   181篇
  2022年   316篇
  2021年   584篇
  2020年   350篇
  2019年   327篇
  2018年   493篇
  2017年   426篇
  2016年   532篇
  2015年   480篇
  2014年   689篇
  2013年   1507篇
  2012年   1081篇
  2011年   1518篇
  2010年   1092篇
  2009年   1043篇
  2008年   1265篇
  2007年   1098篇
  2006年   939篇
  2005年   865篇
  2004年   774篇
  2003年   688篇
  2002年   660篇
  2001年   392篇
  2000年   376篇
  1999年   412篇
  1998年   409篇
  1997年   371篇
  1996年   340篇
  1995年   294篇
  1994年   301篇
  1993年   297篇
  1992年   250篇
  1991年   214篇
  1990年   201篇
  1989年   230篇
  1988年   186篇
  1987年   177篇
  1986年   174篇
  1985年   239篇
  1984年   214篇
  1983年   184篇
  1982年   168篇
  1981年   195篇
  1980年   131篇
  1979年   147篇
  1978年   143篇
  1977年   127篇
  1976年   138篇
  1975年   120篇
  1974年   105篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
The mammalian cochlea is the sensory organ of hearing with a delicate, highly organised structure that supports unique operating mechanisms. ATP release from the secretory tissues of the cochlear lateral wall (stria vascularis) triggers numerous physiological responses by activating P2 receptors in sensory, supporting and neural tissues. Two families of P2 receptors, ATP-gated ion channels (P2X receptors) and G protein-coupled P2Y receptors, activate intracellular signalling pathways that regulate cochlear development, homeostasis, sensory transduction, auditory neurotransmission and response to stress. Of particular interest is a purinergic hearing adaptation, which reflects the critical role of the P2X2 receptor in adaptive cochlear response to elevated sound levels. Other P2 receptors are involved in the maturation of neural processes and frequency selectivity refinement in the developing cochlea. Extracellular ATP signalling is regulated by a family of surface-located enzymes collectively known as “ectonucleotidases” that hydrolyse ATP to adenosine. Adenosine is a constitutive cell metabolite with an established role in tissue protection and regeneration. The differential activation of A1 and A2A adenosine receptors defines the cochlear response to injury caused by oxidative stress, inflammation, and activation of apoptotic pathways. A1 receptor agonism, A2A receptor antagonism, and increasing adenosine levels in cochlear fluids all represent promising therapeutic tools for cochlear rescue from injury and prevention of hearing loss.  相似文献   
22.
It remains uncertain which skeletal sites and parameters should be analyzed in rodent studies evaluating bone health and disease. In this cross-sectional mouse study using micro-computed tomography (µCT), we explored: (1) which microstructural parameters can be used to discriminate female from male bones and (2) whether it is meaningful to evaluate more than one bone site. Microstructural parameters of the trabecular and/or cortical compartments of the femur, tibia, thoracic and lumbar vertebral bodies, and skull were evaluated by µCT in 10 female and 10 male six-month-old C57BL/6J mice. The trabecular number (TbN) was significantly higher, while the trabecular separation (TbSp) was significantly lower in male compared to female mice at all skeletal sites assessed. Overall, bone volume/tissue volume (BV/TV) was also significantly higher in male vs. female mice (except for the thoracic spine, which did not differ by sex). Most parameters of the cortical bone microstructure did not differ between male and female mice. BV/TV, TbN, and TbSp at the femur, and TbN and TbSp at the tibia and lumbar spine could fully (100%) discriminate female from male bones. Cortical thickness (CtTh) at the femur was the best parameter to detect sex differences in the cortical compartment (AUC = 0.914). In 6-month-old C57BL/6J mice, BV/TV, TbN, and TbSp can be used to distinguish male from female bones. Whenever it is not possible to assess multiple bone sites, we propose to evaluate the bone microstructure of the femur for detecting potential sex differences.  相似文献   
23.
Aryl hydrocarbon receptor (AHR) plays pivotal roles in intestinal physiology and pathophysiology. Intestinal AHR is activated by numerous dietary, endogenous, and microbial ligands. Whereas the effects of individual compounds on AHR are mostly known, the effects of real physiological mixtures occurring in the intestine have not been studied. Using reporter gene assays and RT-PCR, we evaluated the combinatorial effects (3520 combinations) of 11 microbial catabolites of tryptophan (MICTs) on AHR. We robustly (n = 30) determined the potencies and relative efficacies of single MICTs. Synergistic effects of MICT binary mixtures were observed between low- or medium-efficacy agonists, in particular for combinations of indole-3-propionate and indole-3-lactate. Combinations comprising highly efficacious agonists such as indole-3-pyruvate displayed rather antagonist effects, caused by saturation of the assay response. These synergistic effects were confirmed by RT-PCR as CYP1A1 mRNA expression. We also tested mimic multicomponent and binary mixtures of MICTs, prepared based on the metabolomic analyses of human feces and colonoscopy aspirates, respectively. In this case, AHR responsiveness did not correlate with type of diet or health status, and the indole concentrations in the mixtures were determinative of gross AHR activity. Future systematic research on the synergistic activation of AHR by microbial metabolites and other ligands is needed.  相似文献   
24.
In recent years, novel strategies to control insects have been based on protease inhibitors (PIs). In this regard, molecular docking and molecular dynamics simulations have been extensively used to investigate insect gut proteases and the interactions of PIs for the development of resistance against insects. We, herein, report an in silico study of (disodium 5′-inosinate and petunidin 3-glucoside), (calcium 5′-guanylate and chlorogenic acid), chlorogenic acid alone, (kaempferol-3,7-di-O-glucoside with hyperoside and delphinidin 3-glucoside), and (myricetin 3′-glucoside and hyperoside) as potential inhibitors of acetylcholinesterase receptors, actin, α-tubulin, arginine kinase, and histone receptor III subtypes, respectively. The study demonstrated that the inhibitors are capable of forming stable complexes with the corresponding proteins while also showing great potential for inhibitory activity in the proposed protein-inhibitor combinations.  相似文献   
25.
26.
A single-center study was conducted on 120 patients with inherited disorders of primary hemostasis followed at our hematological center. These patients presented a variety of bleeding symptoms; however, they had no definitive diagnosis. Establishing a diagnosis has consequences for the investigation of probands in families and for treatment management; therefore, we aimed to improve the diagnosis rate in these patients by implementing advanced diagnostic methods. According to the accepted international guidelines at the time of study, we investigated platelet morphology, platelet function assay, light-transmission aggregometry, and flow cytometry. Using only these methods, we were unable to make a definitive diagnosis for most of our patients. However, next-generation sequencing (NGS), which was applied in 31 patients, allowed us to establish definitive diagnoses in six cases (variants in ANKRD26, ITGA2B, and F8) and helped us to identify suspected variants (NBEAL2, F2, BLOC1S6, AP3D1, GP1BB, ANO6, CD36, and ITGB3) and new suspected variants (GFI1B, FGA, GP1BA, and ITGA2B) in 11 patients. The role of NGS in patients with suspicious bleeding symptoms is growing and it changes the diagnostic algorithm. The greatest disadvantage of NGS, aside from the cost, is the occurrence of gene variants of uncertain significance.  相似文献   
27.
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death that typically presents at an advanced stage. No reliable markers for early detection presently exist. The prominent tumor stroma represents a source of circulating biomarkers for use together with cancer cell-derived biomarkers for earlier PDAC diagnosis. CA19-9 and CEA (cancer cell-derived biomarkers), together with endostatin and collagen IV (stroma-derived) were examined alone, or together, by multivariable modelling, using pre-diagnostic plasma samples (n = 259 samples) from the Northern Sweden Health and Disease Study biobank. Serial samples were available for a subgroup of future patients. Marker efficacy for future PDAC case prediction (n = 154 future cases) was examined by both cross-sectional (ROC analysis) and longitudinal analyses. CA19-9 performed well at, and within, six months to diagnosis and multivariable modelling was not superior to CA19-9 alone in cross-sectional analysis. Within six months to diagnosis, CA19-9 (AUC = 0.92) outperformed the multivariable model (AUC = 0.81) at a cross-sectional level. At diagnosis, CA19-9 (AUC = 0.995) and the model (AUC = 0.977) performed similarly. Longitudinal analysis revealed increases in CA19-9 up to two years to diagnosis which indicates a window of opportunity for early detection of PDAC.  相似文献   
28.
Siponimod (Mayzent®), a sphingosine 1-phosphate receptor (S1PR) modulator which prevents lymphocyte egress from lymphoid tissues, is approved for the treatment of relapsing-remitting and active secondary progressive multiple sclerosis. It can cross the blood–brain barrier (BBB) and selectively binds to S1PR1 and S1PR5 expressed by several cell populations of the central nervous system (CNS) including microglia. In multiple sclerosis, microglia are a key CNS cell population moving back and forth in a continuum of beneficial and deleterious states. On the one hand, they can contribute to neurorepair by clearing myelin debris, which is a prerequisite for remyelination and neuroprotection. On the other hand, they also participate in autoimmune inflammation and axonal degeneration by producing pro-inflammatory cytokines and molecules. In this study, we demonstrate that siponimod can modulate the microglial reaction to lipopolysaccharide-induced pro-inflammatory activation.  相似文献   
29.
Protist grazing pressure plays a major role in controlling aquatic bacterial populations, affecting energy flow through the microbial loop and biogeochemical cycles. Predator-escape mechanisms might play a crucial role in energy flow through the microbial loop, but are yet understudied. For example, some bacteria can use planktonic as well as surface-associated habitats, providing a potential escape mechanism to habitat-specific grazers. We investigated the escape response of the marine bacterium Marinobacter adhaerens in the presence of either planktonic (nanoflagellate: Cafeteria roenbergensis) or surface-associated (amoeba: Vannella anglica) protist predators, following population dynamics over time. In the presence of V. anglica, M. adhaerens cell density increased in the water, but decreased on solid surfaces, indicating an escape response towards the planktonic habitat. In contrast, the planktonic predator C. roenbergensis induced bacterial escape to the surface habitat. While C. roenbergensis cell numbers dropped substantially after a sharp initial increase, V. anglica exhibited a slow, but constant growth throughout the entire experiment. In the presence of C. roenbergensis, M. adhaerens rapidly formed cell clumps in the water habitat, which likely prevented consumption of the planktonic M. adhaerens by the flagellate, resulting in a strong decline in the predator population. Our results indicate an active escape of M. adhaerens via phenotypic plasticity (i.e., behavioral and morphological changes) against predator ingestion. This study highlights the potentially important role of behavioral escape mechanisms for community composition and energy flow in pelagic environments, especially with globally rising particle loads in aquatic systems through human activities and extreme weather events.  相似文献   
30.
Aminopeptidase N (APN), also known as CD13 antigen or membrane alanyl aminopeptidase, belongs to the M1 family of the MA clan of zinc metallopeptidases. In cancer cells, the inhibition of aminopeptidases including APN causes the phenomenon termed the amino acid deprivation response (AADR), a stress response characterized by the upregulation of amino acid transporters and synthetic enzymes and activation of stress-related pathways such as nuclear factor kB (NFkB) and other pro-apoptotic regulators, which leads to cancer cell death by apoptosis. Recently, APN inhibition has been shown to augment DR4-induced tumor cell death and thus overcome resistance to cancer treatment with DR4-ligand TRAIL, which is available as a recombinant soluble form dulanermin. This implies that APN inhibitors could serve as potential weapons for overcoming cancer treatment resistance. In this study, a series of basically substituted acetamidophenones and the semicarbazones and thiosemicarbazones derived from them were prepared, for which APN inhibitory activity was determined. In addition, a selective anti-proliferative activity against cancer cells expressing APN was demonstrated. Our semicarbazones and thiosemicarbazones are the first compounds of these structural types of Schiff bases that were reported to inhibit not only a zinc-dependent aminopeptidase of the M1 family but also a metalloenzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号