The overall behavior of concrete depends on its meso structures such as aggregate shape, interface status, and mortar matrix
property. The two key meso structure characters of concrete, bond status of interface and nonlinear property of matrix, are
considered in focus. The variational structure principle is adopted to establish the macro-meso constitutive law of concrete.
Specially, a linear reference composite material is selected to make its effective behavior approach the nonlinear overall
behavior of concrete. And the overall property of linear reference composite can be estimated by classical estimation method
such as self-consistent estimates method and Mori-Tanaka method. This variational structure method involves an optimum problem
ultimately. Finally, the macro-meso constitutive law of concrete is established by optimizing the shear modulus of matrix
of the linear reference composite. By analyzing the constitutive relation of concrete established, we find that the brittleness
of concrete stems from the imperfect interface and the shear dilation property of concrete comes from the micro holes contained
in concrete.
Supported by the National Natural Science Foundation of China (Grant Nos. 50679022, 90510017, 50539090) and National Basic
Research Program of China (Grant No. 2007CB714104) 相似文献
Information Systems Frontiers - System logs that trace system states and record valuable events comprise a significant component of any computer system in our daily life. Each log contains... 相似文献
Palmprint recognition and palm vein recognition are two emerging biometrics technologies. In the past two decades, many traditional methods have been proposed for palmprint recognition and palm vein recognition, and have achieved impressive results. However, the research on deep learning-based palmprint recognition and palm vein recognition is still very preliminary. In this paper, in order to investigate the problem of deep learning based 2D and 3D palmprint recognition and palm vein recognition in-depth, we conduct performance evaluation of seventeen representative and classic convolutional neural networks (CNNs) on one 3D palmprint database, five 2D palmprint databases and two palm vein databases. A lot of experiments have been carried out in the conditions of different network structures, different learning rates, and different numbers of network layers. We have also conducted experiments on both separate data mode and mixed data mode. Experimental results show that these classic CNNs can achieve promising recognition results, and the recognition performance of recently proposed CNNs is better. Particularly, among classic CNNs, one of the recently proposed classic CNNs, i.e., EfficientNet achieves the best recognition accuracy. However, the recognition performance of classic CNNs is still slightly worse than that of some traditional recognition methods.
International Journal of Control, Automation and Systems - The reinforcement learning problem of complex action control in multiplayer online battlefield games has brought considerable interest in... 相似文献
Uncertainties existing in the acoustic metamaterial may strongly affect its unusual properties. Aiming at this actuality, the interval model is introduced to treat with uncertainties existing in the acoustic metamaterial with Helmholtz resonators. Frequency intervals in which the sound intensity transmission coefficients are certainly less than the required value and the effective bulk moduli are certainly negative are defined as conservative approximations. Frequency intervals in which the sound intensity transmission coefficients may be less than the required value and the effective bulk moduli may be negative are defined as unsafe approximations. The proportion of the conservative approximation and the unsafe approximation is defined as an approximate precision. Based on the quantification of uncertainties of the sound intensity transmission coefficients and the negative effective bulk moduli, an optimization model for the interval acoustic metamaterial with Helmholtz resonators is constructed. Numerical results showed that even suffering from effects of interval parameters, unusual properties of the optimized acoustic metamaterial (such as the bandgap of the sound transmission and the negative effective bulk modulus) could be improved. 相似文献
Based on some assumptions, the dynamic analysis model of anchorage system is established. The dynamic governing equation is expressed as finite difference format and programmed by using MATLAB language. Compared with theoretical method, the finite difference method has been verified to be feasible by a case study. It is found that under seismic loading, the dynamic response of anchorage system is synchronously fluctuated with the seismic vibration. The change of displacement amplitude of material points is slight, and comparatively speaking, the displacement amplitude of the outside point is a little larger than that of the inside point, which shows amplification effect of surface. While the axial force amplitude transforms considerably from the inside to the outside. It increases first and reaches the peak value in the intersection between the anchoring section and free section, then decreases slowly in the free section. When considering damping effect of anchorage system, the finite difference method can reflect the time attenuation characteristic better, and the calculating result would be safer and more reasonable than the dynamic steady-state theoretical method. What is more, the finite difference method can be applied to the dynamic response analysis of harmonic and seismic random vibration for all kinds of anchor, and hence has a broad application prospect. 相似文献