首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
化学工业   10篇
机械仪表   1篇
能源动力   43篇
  2020年   1篇
  2015年   5篇
  2014年   1篇
  2013年   4篇
  2012年   7篇
  2011年   4篇
  2010年   13篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   1篇
排序方式: 共有54条查询结果,搜索用时 15 毫秒
41.
The article presents an investigation of the effect of twisted tape with serrated-edge insert on heat transfer and pressure loss behaviors in a constant heat-fluxed tube. In the experiments, the serrated twisted tape (STT) was inserted into the entire test tube with a constant twist ratio in order to generate a continuous swirling airflow. Two geometry parameters of the STT to be considered in the present work are the serration width ratio and the serration depth ratio. The measurements have been conducted for the airflow rate based on Reynolds numbers in the turbulent regime from 4000 to 20,000. The experimental results of the STT inserted tube are compared with those of the plain tube fitted with typical twisted tape (TT). The results show that the heat transfer rate in terms of Nusselt number, Nu increases with the rise in the depth ratio but decreases with raising the width ratio. The heat transfer rate is up to 72.2% and 27% relative to the plain tube and the TT inserted tube, respectively. The use of the STT leads to higher heat transfer rate and friction factor than that of the TT for all cases. The thermal performance factor of the STT tube under constant pumping power is evaluated and found to be above unity indicating that using the STT tube is advantageous over the TT tube or the plain tube. In addition, the empirical correlations developed by relating the serration width ratio, serration depth ratio and Reynolds number are determined.  相似文献   
42.
This paper presents the effects of cooling of a hot tube on the temperature separation (the temperature reduction of cold air) and cooling efficiency in a counter-flow Ranque–Hilsch vortex tube (RHVT). In the experiments, the hot tube is directly cooled by cooling water jacket. The obtained results reveal that cooling water plays an important role in promoting the energy separation in the RHVT. Consequently, the temperature reduction of the cold tube (Ti − Tc) and thus cooling efficiency in the RHVT with cooling of a hot tube is found to be higher than those of the RHVT without the cooling, under the similar operating conditions. Over the range investigated, the mean cold air temperature reduction and cooling efficiency of the RHVT with the cooling of a hot tube are respectively, 5.5 to 8.8% and 4.7 to 9% higher than those of the RHVT without the cooling.  相似文献   
43.
The paper presents a comparative investigation of enhanced heat transfer and pressure loss by insertion of single twisted tape, full-length dual and regularly-spaced dual twisted tapes as swirl generators, in a round tube under axially uniform wall heat flux (UHF) conditions. The investigation encompassed the Reynolds number based on the inlet tube diameter (D) ranging from 4000 to 19,000. The experiments are performed using single twisted tapes and full-length dual twisted tapes with three different twist ratios (y/w = 3.0, 4.0 and 5.0) and also regularly-spaced dual twisted tapes with three different space ratios (s/D = 0.75, 1.5 and 2.25). The effects of major parameters on heat transfer and friction factor are discussed and the results from both single and dual twisted tape inserts are compared with those from the plain tube. The result shows that the heat transfer of the tube with dual twisted tapes is higher than that of the plain tube with/without single twisted tape insert. For both single twisted tape and full-length dual twisted tapes, Nusselt number (Nu) and friction factor (f) tend to increase with decreasing twist ratio (y/w). The average Nusselt number and friction factor in the tube fitted with the full-length dual twisted tapes at y/w = 3.0, 4.0 and 5.0, are respectively 146%, 135% and 128%; and 2.56, 2.17 and 1.95 times of those in the plain tube. For the regularly-spaced dual twisted tapes, the heat transfer rate is decreased with increasing space ratio (s/D). The average Nusselt numbers in the tube fitted with the regularly-spaced dual twisted tapes (s/D) of 0.75, 1.5 and 2.25 are respectively, 140%, 137% and 133% of that in the plain tube. With the similar trend mentioned above, all dual twisted tapes with free spacing yield lower heat transfer enhancement in comparison with the full-length dual twisted tapes (s/D = 0.0).  相似文献   
44.
A numerical investigation on periodic laminar flow and heat transfer behaviors in a three-dimensional isothermal wall square duct fitted with 30° angled baffles on lower duct wall only is presented. The computations based on a finite volume method with the SIMPLE algorithm have been conducted for the fluid flow in terms of Reynolds numbers ranging from 100 to 2000. The angled baffles with attack angle of 30° are mounted periodically on the lower duct wall to generate a longitudinal vortex flow through the tested duct. Effects of different baffle height and three pitch length ratios on heat transfer and flow characteristics in the duct are investigated. The study shows that the longitudinal vortex flow created by the baffle helps to induce impinging flows over the baffle trailing end sidewall and the inter-baffle cavity wall resulting in drastic increase in heat transfer rate over the test duct. The computational results reveal that the Nusselt number ratio and the maximum thermal enhancement factor values for using the angled baffle are, respectively, found to be about 7.9 and 3.1 at Re = 2000, BR = 0.3 and PR=1.5.  相似文献   
45.
Laminar periodic flow and heat transfer in a two dimensional horizontal channel with isothermal walls and with staggered diamond-shaped baffles is investigated numerically. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 100 to 600. Effects of different baffle tip angles on heat transfer and pressure loss in the channel are studied and the results of the diamond baffle are also compared with those of the flat baffle. It is observed that apart from the rise of Reynolds number, the reduction of the baffle angle leads to an increase in the Nusselt number and friction factor. The computational results reveal that optimum thermal performance is at the baffle angle of 5° for baffle height and spacing of 0.5 and 1 times of the channel height, respectively. The thermal performance of the 5°–10°diamond baffle is found to be higher than that of the flat baffle for all Reynolds numbers used.  相似文献   
46.
The influence of baffle turbulators on heat transfer augmentation in a rectangular channel has been investigated experimentally and numerically. In the experiment, the baffles are placed in a zigzag shape (Z-shaped baffle) aligned in series on the isothermal-fluxed top wall, similar to the absorber plate of a solar air heater channel. The aim at using the Z-baffles is to create co-rotating vortex flows having a significant influence on the flow turbulence intensity leading to higher heat transfer enhancement in the tested channel. Effects of the Z-baffle height and pitch spacing length are examined to find the optimum thermal performance for the Reynolds number from 4400 to 20,400. The Z-baffles inclined to 45° relative to the main flow direction are characterized at three baffle- to channel-height ratios (e/H = 0.1, 0.2 and 0.3) and baffle pitch ratios (P/H = 1.5, 2 and 3). The experimental results show a significant effect of the presence of the Z-baffle on the heat transfer rate and friction loss over the smooth channel with no baffle. The Nusselt number, friction factor and thermal performance enhancement factor for the in-phase 45° Z-baffles are found to be considerably higher than those for the out-phase 45° Z-baffle at a similar operating condition. The in-phase 45° Z-baffle with larger e/H provides higher heat transfer and friction loss than the one with smaller e/H while the shorter pitch length yields the higher Nu, f and TEF than the larger one. The numerical work is also conducted to investigate the flow friction and heat transfer behaviors in the channel mounted with the 45° Z-baffles, and the numerical results are found in good agreement with experimental data.  相似文献   
47.
This work presents an experimental study on the mean Nusselt number, friction factor and enhancement efficiency characteristics in a round tube with short-length twisted tape insert under uniform wall heat flux boundary conditions. In the experiments, measured data are taken at Reynolds numbers in a turbulent region with air as the test fluid. The full-length twisted tape is inserted into the tested tube at a single twist ratio of y/w = 4.0 while the short-length tapes mounted at the entry test section are used at several tape length ratios (LR = ls/lf) of 0.29, 0.43, 0.57 and 1.0 (full-length tape). The short-length tape is introduced as a swirling flow device for generating a strong swirl flow at the tube entry before decaying along the tube. On the other hand, the full-length tape (LR = 1.0) is expected to produce a strongly swirling flow over the whole tube. The variation of heat transfer and pressure loss in the form of Nusselt number (Nu) and friction factor (f) respectively is determined and depicted graphically. The experimental result indicates that the short-length tapes of LR = 0.29, 0.43 and 0.57 perform lower heat transfer and friction factor values than the full-length tape around 14%, 9.5% and 6.7%; and 21%, 15.3% and 10.5%, respectively. In addition, it is apparent that the enhancement efficiency of the tube with the short-length tape insert is found to be lower than that with the full-length one. The mean deviation between measured and correlated values of the Nusselt number is in the order of ± 7% in the range of Reynolds numbers from 4000 to 20,000.  相似文献   
48.
A numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a three-dimensional isothermal wall channel of aspect ratio, AR = 2 with 45° staggered V-baffles. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 100 to 1200. To generate two pair of main streamwise vortex flows through the tested section, V-baffles with an attack angle of 45° are mounted in tandem and staggered arrangement on the lower and upper walls of the channel. Effects of different baffle heights on heat transfer and pressure drop in the channel are studied and the results of the V-baffle pointing upstream are also compared with those of the V-baffle pointing downstream. It is apparent that in each of the main vortex flows, a pair of streamwise twisted vortex (P-vortex) flows can induce impinging flows on a sidewall and a wall of the interbaffle cavity leading to drastic increase in heat transfer rate over the channel. In addition, the rise in the V-baffle height results in the increase in the Nusselt number and friction factor values. The computational results reveal that the optimum thermal enhancement factor is around 2.6 at baffle height of 0.15 times of the channel height for the V-baffle pointing upstream while is about 2.75 at baffle height of 0.2 times for the V-baffle pointing downstream.  相似文献   
49.
The convective heat transfer and friction behaviors of turbulent tube flow through a straight tape with double-sided delta wings(T-W)have been studied experimentally.In the current work,the T-W formed on the tape was used as vortex generators for enhancing the heat transfer coefficient by breakdown of thermal boundary layer and by mixing of fluid flow in tubes.The T-W characteristics are(1)T-W with forward/backward-wing arrangement,(2)T-W with alternate axis(T-WA),(3)three wing-width ratios and(4)wing-pitch ratios.The experimental result reveals that for using the T-W,the increases in the mean Nusselt number(Nu)and friction factor are,respectively,up to 165%and 14.8 times of the plain tube and the maximum thermal performance factor is 1.19.It is also obvious that the T-W with forward-wing gives higher heat transfer rate than one with backward-wing around 7%. The present investigation also shows that the heat transfer rate and friction factor obtained from the T-WA is higher than that from the T-W.In addition,the flow pattern and temperature fields in the T-W tube with both backward and forward wings were also examined numerically.  相似文献   
50.
A numerical investigation has been carried out to examine laminar flow and heat transfer characteristics in a three-dimensional isothermal wall square channel with 45°-angled baffles. The computations are based on the finite volume method, and the SIMPLE algorithm has been implemented. The fluid flow and heat transfer characteristics are presented for Reynolds numbers based on the hydraulic diameter of the channel ranging from 100 to 1000. To generate a pair of mainstreamwise vortex flows through the tested section, baffles with an attack angle of 45° are mounted in tandem and inline arrangement on the lower and upper walls of the channel. Effects of different baffle heights on heat transfer and pressure loss in the channel are studied and the results of the 45° inline baffle are also compared with those of the 90° transverse baffle and the 45° staggered baffle. It is apparent that in each of the main vortex flows, a pair of streamwise twisted vortex (P-vortex) flows created by the 45° baffle exist and help to induce impinging flows on a sidewall and wall of the baffle cavity leading to drastic increase in heat transfer rate over the channel. In addition, the rise in the baffle height results in the increase in the Nusselt number and friction factor values. The computational results reveal that numerical results of both the 45° inline and staggered baffles are nearly the same. The optimum thermal enhancement factor is at the 45° baffle height of 0.2 times of the channel height for both arrays. The maximum thermal enhancement factor of the 45° baffle in the Re range studied is found to be about 2.6 or twice higher than that of the 90° transverse baffle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号