首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   573篇
  免费   22篇
电工技术   3篇
化学工业   265篇
金属工艺   7篇
机械仪表   18篇
建筑科学   11篇
矿业工程   1篇
能源动力   14篇
轻工业   110篇
石油天然气   1篇
无线电   10篇
一般工业技术   81篇
冶金工业   18篇
原子能技术   1篇
自动化技术   55篇
  2023年   10篇
  2022年   58篇
  2021年   59篇
  2020年   18篇
  2019年   18篇
  2018年   13篇
  2017年   16篇
  2016年   18篇
  2015年   16篇
  2014年   18篇
  2013年   42篇
  2012年   33篇
  2011年   41篇
  2010年   36篇
  2009年   32篇
  2008年   42篇
  2007年   21篇
  2006年   17篇
  2005年   17篇
  2004年   12篇
  2003年   3篇
  2002年   6篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   4篇
  1992年   3篇
  1990年   5篇
  1989年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有595条查询结果,搜索用时 12 毫秒
41.
42.
The generation of peptidomimetic substructures for medicinal chemistry purposes requires effective and divergent synthetic methods. We present in this work an efficient flow process that allows quick modulation of reagents for Joullié-Ugi multicomponent reaction, using spiroindolenines as core motifs. This sterically hindered imine equivalent could successfully be diversified using various isocyanides and amino acids in generally good space-time yields. A telescoped flow process combining interrupted Fischer reaction for spiroindolenine synthesis and subsequent Joullié-Ugi-type modification resulted in product formation in very good overall yield in less than 2 hours compared to 48 hours required in batch mode. The developed protocol can be seen as a general tool for rapid and facile generation of peptidomimetic compounds. We also showcase preliminary biological assessments for the prepared compounds.  相似文献   
43.
SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD=42 and 84 μM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3–HSP90 binding was confirmed (KD=13 μM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.  相似文献   
44.
45.
Thanks to their reduced size, great surface area, and capacity to interact with cells and tissues, nanomaterials present some attractive biological and chemical characteristics with potential uses in the field of biomedical applications. In this context, graphene and its chemical derivatives have been extensively used in many biomedical research areas from drug delivery to bioelectronics and tissue engineering. Graphene-based nanomaterials show excellent optical, mechanical, and biological properties. They can be used as a substrate in the field of tissue engineering due to their conductivity, allowing to study, and educate neural connections, and guide neural growth and differentiation; thus, graphene-based nanomaterials represent an emerging aspect in regenerative medicine. Moreover, there is now an urgent need to develop multifunctional and functionalized nanomaterials able to arrive at neuronal cells through the blood-brain barrier, to manage a specific drug delivery system. In this review, we will focus on the recent applications of graphene-based nanomaterials in vitro and in vivo, also combining graphene with other smart materials to achieve the best benefits in the fields of nervous tissue engineering and neural regenerative medicine. We will then highlight the potential use of these graphene-based materials to construct graphene 3D scaffolds able to stimulate neural growth and regeneration in vivo for clinical applications.  相似文献   
46.
With the progress of sequencing technologies, an ever-increasing number of variants of unknown functional and clinical significance (VUS) have been identified in both coding and non-coding regions of the main Breast Cancer (BC) predisposition genes. The aim of this study is to identify a mutational profile of coding and intron-exon junction regions of 12 moderate penetrance genes (ATM, BRIP1, CDH1, CHEK2, NBN, PALB2, PTEN, RAD50, RAD51C, RAD51D, STK11, TP53) in a cohort of 450 Italian patients with Hereditary Breast/Ovarian Cancer Syndrome, wild type for germline mutation in BRCA1/2 genes. The analysis was extended to 5′UTR and 3′UTR of all the genes listed above and to the BRCA1 and BRCA2 known regulatory regions in a subset of 120 patients. The screening was performed through NGS target resequencing on the Illumina platform MiSeq. 8.7% of the patients analyzed is carriers of class 5/4 coding variants in the ATM (3.6%), BRIP1 (1.6%), CHEK2 (1.8%), PALB2 (0.7%), RAD51C (0.4%), RAD51D (0.4%), and TP53 (0.2%) genes, while variants of uncertain pathological significance (VUSs)/class 3 were identified in 9.1% of the samples. In intron-exon junctions and in regulatory regions, variants were detected respectively in 5.1% and in 32.5% of the cases analyzed. The average age of disease onset of 44.4 in non-coding variant carriers is absolutely similar to the average age of disease onset in coding variant carriers for each proband’s group with the same cancer type. Furthermore, there is not a statistically significant difference in the proportion of cases with a tumor onset under age of 40 between the two groups, but the presence of multiple non-coding variants in the same patient may affect the aggressiveness of the tumor and it is worth underlining that 25% of patients with an aggressive tumor are carriers of a PTEN 3′UTR-variant. This data provides initial information on how important it might be to extend mutational screening to the regulatory regions in clinical practice.  相似文献   
47.
Dendritic cells (DCs) can be divided by lineage into myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs). They both are present in mucosal tissues and regulate the immune response by secreting chemokines and cytokines. Inflammatory bowel diseases (IBDs) are characterized by a leaky intestinal barrier and the consequent translocation of bacterial lipopolysaccharide (LPS) to the basolateral side. This results in DCs activation, but the response of pDCs is still poorly characterized. In the present study, we compared mDCs and pDCs responses to LPS administration. We present a broad panel of DCs secreted factors, including cytokines, chemokines, and growth factors. Our recent studies demonstrated the anti-inflammatory effects of quercetin administration, but to date, there is no evidence about quercetin’s effects on pDCs. The results of the present study demonstrate that pDCs can respond to LPS and that quercetin exposure modulates soluble factors release through the same molecular pathway used by mDCs (Slpi, Hmox1, and AP-1).  相似文献   
48.
In this pilot study, ethosomes and transethosomes were investigated as potential delivery systems for cholecalciferol (vitamin D3), whose deficiency has been correlated to many disorders such as dermatological diseases, systemic infections, cancer and sarcopenia. A formulative study on the influence of pharmaceutically acceptable ionic and non-ionic surfactants allowed the preparation of different transethosomes. In vitro cytotoxicity was evaluated in different cell types representative of epithelial, connective and muscle tissue. Then, the selected nanocarriers were further investigated at light and transmission electron microscopy to evaluate their uptake and intracellular fate. Both ethosomes and transethosomes proven to have physicochemical properties optimal for transdermal penetration and efficient vitamin D3 loading; moreover, nanocarriers were easily internalized by all cell types, although they followed distinct intracellular fates: ethosomes persisted for long times inside the cytoplasm, without inducing subcellular alteration, while transethosomes underwent rapid degradation giving rise to an intracellular accumulation of lipids. These basic results provide a solid scientific background to in vivo investigations aimed at exploring the efficacy of vitamin D3 transdermal administration in different experimental and pathological conditions.  相似文献   
49.
Extracellular vesicles (EVs) are a family of particles/vesicles present in blood and body fluids, composed of phospholipid bilayers that carry a variety of molecules that can mediate cell communication, modulating crucial cell processes such as homeostasis, induction/dampening of inflammation, and promotion of repair. Their existence, initially suspected in 1946 and confirmed in 1967, spurred a sharp increase in the number of scientific publications. Paradoxically, the increasing interest for EV content and function progressively reduced the relevance for a precise nomenclature in classifying EVs, therefore leading to a confusing scientific production. The aim of this review was to analyze the evolution of the progress in the knowledge and definition of EVs over the years, with an overview of the methodologies used for the identification of the vesicles, their cell of origin, and the detection of their cargo. The MISEV 2018 guidelines for the proper recognition nomenclature and ways to study EVs are summarized. The review finishes with a “more questions than answers” chapter, in which some of the problems we still face to fully understand the EV function and potential as a diagnostic and therapeutic tool are analyzed.  相似文献   
50.
Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号