首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21726篇
  免费   3057篇
  国内免费   9篇
电工技术   1480篇
综合类   877篇
化学工业   10066篇
金属工艺   364篇
机械仪表   468篇
建筑科学   1000篇
矿业工程   198篇
能源动力   209篇
轻工业   1980篇
水利工程   142篇
石油天然气   70篇
武器工业   1篇
无线电   658篇
一般工业技术   4058篇
冶金工业   383篇
原子能技术   41篇
自动化技术   2797篇
  2023年   721篇
  2022年   464篇
  2021年   867篇
  2020年   827篇
  2019年   704篇
  2018年   711篇
  2017年   506篇
  2016年   793篇
  2015年   970篇
  2014年   1030篇
  2013年   1744篇
  2012年   805篇
  2011年   730篇
  2010年   1097篇
  2009年   1165篇
  2008年   628篇
  2007年   590篇
  2006年   434篇
  2005年   437篇
  2004年   420篇
  2003年   368篇
  2002年   328篇
  2001年   207篇
  1999年   161篇
  1998年   262篇
  1997年   182篇
  1996年   262篇
  1995年   232篇
  1994年   195篇
  1993年   265篇
  1992年   187篇
  1990年   181篇
  1989年   210篇
  1987年   191篇
  1986年   215篇
  1985年   184篇
  1984年   188篇
  1983年   191篇
  1982年   177篇
  1981年   225篇
  1980年   175篇
  1979年   187篇
  1977年   161篇
  1976年   167篇
  1975年   224篇
  1974年   204篇
  1973年   386篇
  1972年   227篇
  1971年   159篇
  1968年   157篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Mitochondrial oxidative damage and dysfunction contribute to a wide range of human diseases. Considering the limitation of conventional antioxidants and that mitochondria are the main source of reactive oxygen species (ROS) which induce oxidative damage, mitochondria-targeted antioxidants which can selectively block mitochondrial oxidative damage and prevent various types of cell death have been widely developed. As a lipophilic cation, triphenylphosphonium (TPP) has been commonly used in designing mitochondria-targeted antioxidants. Conjugated with the TPP moiety, antioxidants can achieve more than 1000-fold higher mitochondrial concentration depending on cell membrane potentials and mitochondrial membrane potentials. Herein we discuss the deficiencies of conventional antioxidants and the advantages of mitochondrial targeting, and review various types of TPP-based mitochondria-targeted antioxidants. These provide theoretical and background support for the design of new anti-oxidant.  相似文献   
32.
Potential mGAT4 inhibitors derived from the lead substance (S)-SNAP-5114 have been synthesized and characterized for their inhibitory potency. Variations from the parent compound included the substitution of one of its aromatic 4-methoxy and 4-methoxyphenyl groups, respectively, with a more polar moiety, including a carboxylic acid, alcohol, nitrile, carboxamide, sulfonamide, aldehyde or ketone function, or amino acid partial structures. Furthermore, it was investigated how the substitution of more than one of the aromatic 4-methoxy groups affects the potency and selectivity of the resulting compounds. Among the synthesized test substances (S)-1-{2-[(4-formylphenyl)bis(4-methoxyphenyl)-methoxy]ethyl}piperidine-3-carboxylic acid, that features a carbaldehyde function in place of one of the aromatic 4-methoxy moieties of (S)-SNAP-5114, was found to have a pIC50 value of 5.89±0.07, hence constituting a slightly more potent mGAT4 inhibitor than the parent substance while showing comparable subtype selectivity.  相似文献   
33.
34.
The custom design of protein–dendron amphiphilic macromolecules is at the forefront of macromolecular engineering. Macromolecules with this architecture are very interesting because of their ability to self-assemble into various biomimetic nanoscopic structures. However, to date, there are no reports on this concept due to technical challenges associated with the chemical synthesis. Towards that end, herein, a new chemical methodology for the modular synthesis of a suite of monodisperse, facially amphiphilic, protein–dendron bioconjugates is reported. Benzyl ether dendrons of different generations (G1–G4) are coupled to monodisperse cetyl ethylene glycol to form macromolecular amphiphilic activity-based probes (AABPs) with a single protein reactive functionality. Micelle-assisted protein labeling technology is utilized for site-specific conjugation of macromolecular AABPs to globular proteins to make monodisperse, facially amphiphilic, protein–dendron bioconjugates. These biohybrid conjugates have the ability to self-assemble into supramolecular protein nanoassemblies. Self-assembly is primarily mediated by strong hydrophobic interactions of the benzyl ether dendron domain. The size, surface charge, and oligomeric state of protein nanoassemblies could be systematically tuned by choosing an appropriate dendron or protein of interest. This chemical method discloses a new way to custom-make monodisperse, facially amphiphilic, protein–dendron bioconjugates.  相似文献   
35.
36.
In the quest for new antibacterial agents, a series of novel long- and medium-chain mono- and disubstituted β-lactones was developed. Their activity against three pathogenic mycobacteria—M. abscessus, M. marinum, and M. tuberculosis—was assessed by the resazurin microtiter assay (REMA). Among the 16 β-lactones synthesized, only 3-hexadecyloxetan-2-one (VM005) exhibited promising activity against M. abscessus, whereas most of the β-lactones showed interesting activities against M. marinum, similar to that of the classical antibiotic, isoniazid. Regarding M. tuberculosis, six compounds were found to be active against this mycobacterium, with β-lactone VM008 [trans-(Z)-3-(hexadec-7-en-1-yl)-4-propyloxetan-2-one] being the best growth inhibitor. The promising antibacterial activities of the best compounds in this series suggest that these molecules may serve as leads for the development of much more efficient antimycobacterial agents.  相似文献   
37.
One-third of all proteins are estimated to require metals for structural stability and/or catalytic activity. Desthiobiotin probes containing metal binding groups can be used to capture metalloproteins with exposed active-site metals under mild conditions so as to prevent changes in metallation state. The proof-of-concept was demonstrated with carbonic anhydrase (CA), an open active site, Zn2+-containing protein. CA was targeted by using sulfonamide derivatives. Linkers of various lengths and structures were screened to determine the optimal structure for capture of the native protein. The optimized probes could selectively pull down CA from red blood cell lysate and other protein mixtures. Pull-down of differently metallated CAs was also investigated.  相似文献   
38.
Mincle agonists have been shown to induce inflammatory cytokine production, such as tumor necrosis factor-alpha (TNF) and promote the development of a Th1/Th17 immune response that might be crucial to development of effective vaccination against pathogens such as Mycobacterium tuberculosis. As an expansion of our previous work, a library of 6,6′-amide and sulfonamide α,α-d -trehalose compounds with various substituents on the aromatic ring was synthesized efficiently in good to excellent yields. These compounds were evaluated for their ability to activate the human C-type lectin receptor Mincle by the induction of cytokines from human peripheral blood mononuclear cells. A preliminary structure–activity relationship (SAR) of these novel trehalose diamides and sulfonamides revealed that aryl amide-linked trehalose compounds demonstrated improved activity and relatively high potency cytokine production compared to the Mincle ligand trehalose dibehenate adjuvant (TDB) and the natural ligand trehalose dimycolate (TDM) inducing dose-dependent and human-Mincle-specific stimulation in a HEK reporter cell line.  相似文献   
39.
Chorismate and isochorismate constitute branch-point intermediates in the biosynthesis of many aromatic metabolites in microorganisms and plants. To obtain unnatural compounds, we modified the route to menaquinone in Escherichia coli. We propose a model for the binding of isochorismate to the active site of MenD ((1R,2S, 5S,6S)-2-succinyl-5-enolpyruvyl-6-hydroxycyclohex-3-ene-1-carboxylate (SEPHCHC) synthase) that explains the outcome of the native reaction with α-ketoglutarate. We have rationally designed variants of MenD for the conversion of several isochorismate analogues. The double-variant Asn117Arg–Leu478Thr preferentially converts (5S,6S)-5,6-dihydroxycyclohexa-1,3-diene-1-carboxylate (2,3-trans-CHD), the hydrolysis product of isochorismate, with a >70-fold higher ratio than that for the wild type. The single-variant Arg107Ile uses (5S,6S)-6-amino-5-hydroxycyclohexa-1,3-diene-1-carboxylate (2,3-trans-CHA) as substrate with >6-fold conversion compared to wild-type MenD. The novel compounds have been made accessible in vivo (up to 5.3 g L−1). Unexpectedly, as the identified residues such as Arg107 are highly conserved (>94 %), some of the designed variations can be found in wild-type SEPHCHC synthases from other bacteria (Arg107Lys, 0.3 %). This raises the question for the possible natural occurrence of as yet unexplored branches of the shikimate pathway.  相似文献   
40.
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the “canonical” one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号