首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20732篇
  免费   2269篇
  国内免费   7篇
电工技术   1424篇
综合类   866篇
化学工业   9641篇
金属工艺   291篇
机械仪表   433篇
建筑科学   1472篇
矿业工程   182篇
能源动力   191篇
轻工业   1871篇
水利工程   135篇
石油天然气   70篇
武器工业   1篇
无线电   454篇
一般工业技术   3481篇
冶金工业   194篇
原子能技术   46篇
自动化技术   2256篇
  2023年   807篇
  2022年   396篇
  2021年   1059篇
  2020年   1049篇
  2019年   733篇
  2018年   621篇
  2017年   440篇
  2016年   699篇
  2015年   860篇
  2014年   901篇
  2013年   1576篇
  2012年   644篇
  2011年   541篇
  2010年   907篇
  2009年   1046篇
  2008年   488篇
  2007年   437篇
  2006年   320篇
  2005年   331篇
  2004年   358篇
  2003年   319篇
  2002年   287篇
  2001年   175篇
  1998年   229篇
  1997年   158篇
  1996年   230篇
  1995年   220篇
  1994年   181篇
  1993年   252篇
  1992年   188篇
  1991年   154篇
  1990年   176篇
  1989年   201篇
  1987年   190篇
  1986年   210篇
  1985年   186篇
  1984年   187篇
  1983年   192篇
  1982年   175篇
  1981年   225篇
  1980年   174篇
  1979年   180篇
  1977年   161篇
  1976年   162篇
  1975年   221篇
  1974年   201篇
  1973年   382篇
  1972年   227篇
  1971年   157篇
  1968年   156篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Hydraulic comminution is especially suitable if the elastic properties of the components differ significantly. Here, the basic equations of the elasticity theory were drafted for two model shapes. In cylindrical as well as in Cartesian coordinates, the solution to the equation system is obtained through the solution of the bipotential equation via the introduction of a stress function. However, certain boundary conditions have to be fulfilled. In the case of all‐round constant compression, this can be achieved through an approach in integral form for both model shapes.  相似文献   
992.
Lithocholic acid (LCA), a physiological ligand for the nuclear receptor FXR and the G‐protein‐coupled receptor TGR5, has been recently described as an antagonist of the EphA2 receptor, a key member of the ephrin signalling system involved in tumour growth. Given the ability of LCA to recognize FXR, TGR5, and EphA2 receptors, we hypothesized that the structural requirements for a small molecule to bind each of these receptors might be similar. We therefore selected a set of commercially available FXR or TGR5 ligands and tested them for their ability to inhibit EphA2 by targeting the EphA2‐ephrin‐A1 interface. Among the selected compounds, the stilbene carboxylic acid GW4064 was identified as an effective antagonist of EphA2, being able to block EphA2 activation in prostate carcinoma cells, in the micromolar range. This finding proposes the “target hopping” approach as a new effective strategy to discover new protein–protein interaction inhibitors.  相似文献   
993.
A series of benzo[b]furans was synthesized with modification at the 5‐position of the benzene ring by introducing C‐linked substituents (aryl, alkenyl, alkynyl, etc.). These compounds were evaluated for their antiproliferative activities, inhibition of tubulin polymerization, and cell‐cycle effects. Some compounds in this series displayed excellent activity in the nanomolar range against lung cancer (A549) and renal cell carcinoma (ACHN) cancer cell lines. (6‐Methoxy‐5‐((4‐methoxyphenyl)ethynyl)‐3‐methylbenzofuran‐2‐yl)(3,4,5‐trimethoxyphenyl)methanone ( 26 ) and (E)‐3‐(6‐methoxy‐3‐methyl‐2‐(1‐(3,4,5‐trimethoxyphenyl)vinyl)benzofuran‐5‐yl)prop‐2‐en‐1‐ol ( 36 ) showed significant activity in the A549 cell line, with IC50 values of 0.08 and 0.06 μM , respectively. G2/M cell‐cycle arrest and subsequent apoptosis was observed in the A549 cell line after treatment with these compounds. The most active compound in this series, 36 , also inhibited tubulin polymerization with a value similar to that of combretastatin A‐4 (1.95 and 1.86 μM , respectively). Furthermore, detailed biological studies such as Hoechst 33258 staining, DNA fragmentation and caspase‐3 assays, and western blot analyses with the pro‐apoptotic protein Bax and the anti‐apoptotic protein Bcl‐2 also suggested that these compounds induce cell death by apoptosis. Molecular docking studies indicated that compound 36 interacts and binds efficiently with the tubulin protein.  相似文献   
994.
The influenza RNA polymerase complex, which consists of the three subunits PA, PB1, and PB2, is a promising target for the development of new antiviral drugs. A large library of benzofurazan compounds was synthesized and assayed against influenza virus A/WSN/33 (H1N1). Most of the new derivatives were found to act by inhibiting the viral RNA polymerase complex through disruption of the complex formed between subunits PA and PB1. Docking studies were also performed to elucidate the binding mode of benzofurazans within the PB1 binding site in PA and to identify amino acids involved in their mechanism of action. The predicted binding pose is fully consistent with the biological data and lays the foundation for the rational development of more effective PA–PB1 inhibitors.  相似文献   
995.
Noscapine, a phthalideisoquinoline alkaloid derived from Papaver somniferum, is a well‐known antitussive drug that has a relatively safe in vitro toxicity profile. Noscapine is also known to possess weak anticancer efficacy, and since its discovery, efforts have been made to design derivatives with improved potency. Herein, the synthesis of a series of noscapine analogues, which have been modified in the 6′, 9′, 1 and 7‐positions, is described. In a previous study, replacement of the naturally occurring N‐methyl group in the 6′‐position with an N‐ethylaminocarbonyl was shown to promote cell‐cycle arrest and cytotoxicity against three cancer cell lines. Here, this modification has been combined with other structural changes that have previously been shown to improve anticancer activity, namely halo substitution in the 9′‐position, regioselective O‐demethylation to reveal a free phenol in the 7‐position, and reduction of the lactone to the corresponding cyclic ether in the 1‐position. The incorporation of new aryl substituents in the 9′‐position was also investigated. The study identified interesting new compounds able to induce G2/M cell‐cycle arrest and that possess cytotoxic activity against the human prostate carcinoma cell line PC3, the human breast adenocarcinoma cell line MCF‐7, and the human pancreatic epithelioid carcinoma cell line PANC‐1. In particular, the ethyl urea cyclic ether noscapinoids and a compound containing a 6′‐ethylaminocarbonyl along with 9′‐chloro, 7‐hydroxy and lactone moieties exhibited the most promising biological activities, with EC50 values in the low micromolar range against all three cancer cell lines, and these derivatives warrant further investigation.  相似文献   
996.
A significant improvement in the treatment of trypanosomiases has been achieved with the recent development of nifurtimox–eflornithine combination therapy (NECT). As an alternative to drug combinations and as a means to overcome most of the antitrypanosomatid drug discovery challenges, a multitarget drug design strategy has been envisaged. To begin testing this hypothesis, we designed and developed a series of quinone–coumarin hybrids against glyceraldehyde‐3‐phosphate dehydrogenase/trypanothione reductase (GAPDH/TR). These enzymes belong to metabolic pathways that are vital to Trypanosoma brucei and Trypanosoma cruzi, and have thus been considered promising drug targets. The synthesized molecules were characterized for their dual‐target antitrypanosomal profile, both in enzyme assays and in in vitro parasite cultures. The merged derivative 2‐{[3‐(3‐dimethylaminopropoxy)‐2‐oxo‐2H‐chromen‐7‐yl]oxy}anthracene‐1,4‐dione ( 10 ) showed an IC50 value of 5.4 μM against TbGAPDH and a concomitant Ki value of 2.32 μM against TcTR. Notably, 2‐{4‐[6‐(2‐dimethylaminoethoxy)‐2‐oxo‐2H‐chromen‐3‐yl]phenoxy}anthracene‐1,4‐dione (compound 6 ) displayed a remarkable EC50 value for T. brucei parasites (0.026 μM ) combined with a very low cytotoxicity toward mammalian L6 cells (7.95 μM ). This promising low toxicity of compound 6 might be at least partially due to the fact that it does not interfere with human glutathione reductase.  相似文献   
997.
Plasmodium falciparum is responsible of the most severe form of malaria, and new targets and novel chemotherapeutic scaffolds are needed to fight emerging multidrug‐resistant strains of this parasite. Bis‐alkylguanidines have been designed to mimic choline, resulting in the inhibition of plasmodial de novo phosphatidylcholine biosynthesis. Despite potent in vitro antiplasmodial and in vivo antimalarial activities, a major drawback of these compounds for further clinical development is their low oral bioavailability. To solve this issue, various modulations were performed on bis‐alkylguanidines. The introduction of N‐disubstituents on the guanidino motif improved both in vitro and in vivo activities. On the other hand, in vivo pharmacological evaluation in a mouse model showed that the N‐hydroxylated derivatives constitute the first oral bioprecursors in bis‐alkylguanidine series. This study paves the way for bis‐alkylguanidine‐based oral antimalarial agents targeting plasmodial phospholipid metabolism.  相似文献   
998.
The field of small‐molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof‐of‐concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1R and OX2R), termed dual orexin receptor antagonists (DORAs), affording late‐stage development candidates including Merck’s suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1R or OX2R alone has been hampered by the dearth of suitable subtype‐selective, orally bioavailable ligands. Herein, we report the development of a selective orexin 2 antagonist (2‐SORA) series to afford a potent, orally bioavailable 2‐SORA ligand. Several challenging medicinal chemistry issues were identified and overcome during the development of these 2,5‐disubstituted nicotinamides, including reversible CYP inhibition, physiochemical properties, P‐glycoprotein efflux and bioactivation. This article highlights structural modifications the team utilized to drive compound design, as well as in vivo characterization of our 2‐SORA clinical candidate, 5′′‐chloro‐N‐[(5,6‐dimethoxypyridin‐2‐yl)methyl]‐2,2′:5′,3′′‐terpyridine‐3′‐carboxamide (MK‐1064), in mouse, rat, dog, and rhesus sleep models.  相似文献   
999.
Intravenous (i.v.) formulations with various amounts of organic solvents [PEG400, propylene glycol (PG), cremophor EL (CrEL)] were used to deliver a fluorinated sulfonamide bacteriochlorin to mice, rats, and minipigs. Biodistribution studies in mice showed that a low‐content CrEL formulation combines high bioavailability with high tumor‐to‐muscle and tumor‐to‐skin ratios. This formulation was also the most successful in the photodynamic therapy of mice with subcutaneously implanted CT26 murine colon adenocarcinoma tumors. Pharmacokinetic studies in mice and minipigs revealed that with the same low CrEL formulation, the half‐life of the photosensitizer in the central compartment was longer in minipigs. Differences in biodistribution with the various formulations, and in pharmacokinetics between the two animal species with the same formulation, are attributed to the interaction of the formulations with low‐density lipoproteins (LDLs). Skin photosensitivity studies in rats showed that 30 min exposure of the skin to a solar simulator 7 days after i.v. administration of the fluorinated sulfonamide bacteriochlorin at 1 mg kg?1 did not elicit significant skin reactions.  相似文献   
1000.
A novel SiX–dipropargyl glycerol scaffold (X: H, F, or 18F) was developed as a versatile prosthetic group that provides technical advantages for the preparation of dimeric radioligands based on silicon fluoride acceptor pre‐ or post‐labeling with fluorine‐18. Rapid conjugation with the prosthetic group takes place in microwave‐assisted click conjugation under mild conditions. Thus, a bivalent homodimeric SiX–dipropargyl glycerol derivatized radioligand, [18F]BMPPSiF, with enhanced affinity was developed by using click conjugation. High uptake of the radioligand was demonstrated in 5‐HT1A receptor‐rich regions in the brain with positron emission tomography. Molecular docking studies (rigid protein–flexible ligand) of BMPPSiF and known antagonists (WAY‐100635, MPPF, and MefWAY) with monomeric, dimeric, and multimeric 5‐HT1A receptor models were performed, with the highest G score obtained for docked BMPPSiF: ?6.766 as compared with all three antagonists on the monomeric model. Multimeric induced‐fit docking was also performed to visualize the comparable mode of binding under in vivo conditions, and a notably improved G score of ?8.455 was observed for BMPPSiF. These data directly correlate the high binding potential of BMPPSiF with the bivalent binding mode obtained in the biological studies. The present study warrants wide application of the SiX–dipropargyl glycerol prosthetic group in the development of ligands for imaging with enhanced affinity markers for specific targeting based on peptides, nucleosides, and lipids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号