首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10267篇
  免费   1873篇
  国内免费   3篇
电工技术   572篇
综合类   650篇
化学工业   7167篇
金属工艺   116篇
机械仪表   44篇
建筑科学   344篇
矿业工程   38篇
能源动力   31篇
轻工业   504篇
水利工程   19篇
石油天然气   5篇
武器工业   2篇
无线电   70篇
一般工业技术   1652篇
冶金工业   38篇
原子能技术   4篇
自动化技术   887篇
  2023年   543篇
  2022年   331篇
  2021年   613篇
  2020年   603篇
  2019年   470篇
  2018年   470篇
  2017年   334篇
  2016年   499篇
  2015年   600篇
  2014年   634篇
  2013年   807篇
  2012年   399篇
  2011年   284篇
  2010年   605篇
  2009年   693篇
  2008年   262篇
  2007年   218篇
  2006年   135篇
  2005年   148篇
  2004年   208篇
  2003年   148篇
  2002年   183篇
  2001年   82篇
  1999年   59篇
  1998年   59篇
  1996年   71篇
  1995年   101篇
  1994年   70篇
  1993年   125篇
  1992年   88篇
  1991年   73篇
  1990年   88篇
  1989年   92篇
  1988年   71篇
  1987年   92篇
  1986年   102篇
  1985年   86篇
  1984年   83篇
  1983年   107篇
  1982年   75篇
  1981年   105篇
  1980年   83篇
  1979年   66篇
  1977年   61篇
  1976年   49篇
  1975年   64篇
  1974年   67篇
  1973年   133篇
  1972年   76篇
  1971年   49篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
Infections from antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa are a serious threat because reduced antibiotic efficacy complicates treatment decisions and prolongs the disease state in many patients. To expand the arsenal of treatments against antimicrobial-resistant (AMR) pathogens, 600-Da branched polyethylenimine (BPEI) can overcome antibiotic resistance mechanisms and potentiate β-lactam antibiotics against Gram-positive bacteria. BPEI binds cell-wall teichoic acids and disables resistance factors from penicillin binding proteins PBP2a and PBP4. This study describes a new mechanism of action for BPEI potentiation of antibiotics generally regarded as agents effective against Gram-positive pathogens but not Gram-negative bacteria. 600-Da BPEI is able to reduce the barriers to drug influx and facilitate the uptake of a non-β-lactam co-drug, erythromycin, which targets the intracellular machinery. Also, BPEI can suppress production of the cytokine interleukin IL-8 by human epithelial keratinocytes. This enables BPEI to function as a broad-spectrum antibiotic potentiator, and expands the opportunities to improve drug design, antibiotic development, and therapeutic approaches against pathogenic bacteria, especially for wound care.  相似文献   
152.
Cyanobactins are a large family of cyanobacterial ribosomally synthesized and post-translationally modified peptides (RiPPs) often associated with biological activities, such as cytotoxicity, antiviral, and antimalarial activities. They are traditionally described as cyclic molecules containing heterocyclized amino acids. However, this definition has been recently challenged by the discovery of short, linear cyanobactins containing three to five amino acids as well as cyanobactins containing no heterocyclized residues. Herein we report the discovery of scytodecamide ( 1 ) from the freshwater cyanobacterium Scytonema sp. UIC 10036. Structural elucidation based on mass spectrometry, 1D and 2D NMR spectroscopy, and Marfey's method revealed 1 to be a linear decapeptide with an N-terminal N-methylation and a C-terminal amidation. The genome of Scytonema sp. UIC 10036 was sequenced, and bioinformatic analysis revealed a cyanobactin-like biosynthetic gene cluster consistent with the structure of 1 . The discovery of 1 as a novel linear peptide containing an N-terminal N-methylation and a C-terminal amidation expands the chemical and genetic diversity of the cyanobactin family of compounds.  相似文献   
153.
Isotopic labeling experiments performed with a newly identified bacterial trichoacorenol synthase established a 1,5-hydride shift occurring in the cyclization mechanism. During EI-MS analysis, major fragments of the sesquiterpenoid were shown to arise via cryptic hydrogen movements. Therefore, the interpretation of earlier results regarding the cyclization mechanism obtained by feeding experiments in Trichoderma is revised.  相似文献   
154.
Mass spectrometry is the method of choice for the characterisation of proteomes. Most proteins operate in protein complexes, in which their close association modulates their function. However, with standard MS analysis, information on protein–protein interactions is lost and no structural information is retained. To gain structural and interactome data, new crosslinking reagents are needed that freeze inter- and intramolecular interactions. Herein, the development of a new reagent, which has several features that enable highly sensitive crosslinking MS, is reported. The reagent enables enrichment of crosslinked peptides from the majority of background peptides to facilitate efficient detection of low-abundant crosslinked peptides. Due to the special cleavable properties, the reagent can be used for MS2 and potentially for MS3 experiments. Thus, the new crosslinking reagent, in combination with high-end MS, should enable sensitive analysis of interactomes, which will help researchers to obtain important insights into cellular states in health and diseases.  相似文献   
155.
Glucose addiction is observed in cancer and other diseases that are associated with hyperproliferation. The development of compounds that restrict glucose supply and decrease glycolysis has great potential for the development of new therapeutic approaches. Addressing facilitative glucose transporters (GLUTs), which are often upregulated in glucose-dependent cells, is therefore of particular interest. This article reviews a selection of potent, isoform-selective GLUT inhibitors and their biological characterization. Potential therapeutic applications of GLUT inhibitors in oncology and other diseases that are linked to glucose addiction are discussed.  相似文献   
156.
Boronic acids have long been known to form cyclic diesters with cis-diol compounds, including many carbohydrates. This phenomenon was previously exploited to create an artificial lectin by incorporating p-borono-l -phenylalanine (Bpa) into the ligand pocket of an engineered lipocalin, resulting in a so-called Borocalin. Here we describe the X-ray analysis of its covalent complex with 4-nitrocatechol as a high-affinity model ligand. As expected, the crystal structure reveals the formation of a cyclic diester between the biosynthetic boronate side chain and the two ortho-hydroxy substituents of the benzene ring. Interestingly, the boron also has a hydroxide ion associated, despite an only moderately basic pH 8.5 in the crystallization buffer. The complex is stabilized by a polar contact to the side chain of Asn134 within the ligand pocket, thus validating the functional design of the Borocalin as an artificial sugar-binding protein. Our structural analysis demonstrates how a boronate can form a thermodynamically stable diester with a vicinal diol in a tetrahedral configuration in aqueous solution near physiological pH. Moreover, our data provide a basis for the further engineering of the Borocalin with the goal of specific recognition of biologically relevant glycans.  相似文献   
157.
Lysine-specific demethylase 1 (LSD1) has evolved as a promising therapeutic target for cancer treatment, especially in acute myeloid leukaemia (AML). To approach the challenge of site-specific LSD1 inhibition, we developed an enzyme-prodrug system with the bacterial nitroreductase NfsB (NTR) that was expressed in the virally transfected AML cell line THP1-NTR+. The cellular activity of the NTR was proven with a new luminescent NTR probe. We synthesised a diverse set of nitroaromatic prodrugs that by design do not affect LSD1 and are reduced by the NTR to release an active LSD1 inhibitor. The emerging side products were differentially analysed using negative controls, thereby revealing cytotoxic effects. The 2-nitroimidazolyl prodrug of a potent LSD1 inhibitor emerged as one of the best prodrug candidates with a pronounced selectivity window between wild-type and transfected THP1 cells. Our prodrugs are selectively activated and release the LSD1 inhibitor locally, proving their suitability for future targeting approaches.  相似文献   
158.
Probing the composition of the microbiome and its association with health and disease states is more accessible than ever due to the rise of affordable sequencing technology. Despite advances in our ability to identify members of symbiont communities, untangling the chemical signaling that they use to communicate with host organisms remains challenging. In order to gain a greater mechanistic understanding of how the microbiome impacts health, and how chemical ecology can be leveraged to advance small-molecule drug discovery from microorganisms, the principals governing communication between host and symbiont must be elucidated. Herein, we review common modes of interkingdom small-molecule communication in terrestrial and marine environments, describe the differences between these environments, and detail the advantages and disadvantages for studies focused on the marine environment. Finally, we propose the use of plant-endophyte interactions as a stepping stone to a greater understanding of similar interactions in marine invertebrates, and ultimately in humans.  相似文献   
159.
γ-Hydroxybutyric acid (GHB) functions as a depressant on the central nerve system and serves as a pharmaceutical agent in the treatment of narcolepsy and alcohol withdraw. In recent years, GHB has been misused as a recreational drug due to its ability to induce euphoric feelings. Moreover, it has gained increasing attention as a popular drug of abuse that is frequently related to drug-facilitated sexual assaults. At the moment, detection methods based on chromatography exhibit extraordinary sensitivity for GHB sensing. However, such techniques require complicated sample treatment prior to analysis. Optical sensors provide an alternative approach for rapid and simple analysis of GHB samples. Unfortunately, currently reported probes are mostly based on hydrogen bonding to recognize GHB, and this raises concerns about, for example, the lack of specificity. In this work, we report a bioinspired strategy for selective sensing of GHB. The method is based on specific enzyme recognition to allow highly selective detection of GHB with minimum interference, even in a complex sample matrix (e. g., simulated urine). In addition, the result can be obtained by either quantitative spectroscopy analysis or colorimetric change observed by the naked-eye, thus demonstrating its potential application in drug screening and forensic analysis.  相似文献   
160.
The elemental composition of a single yeast, green alga, or red blood cell (RBC) was precisely determined by using inductively coupled plasma-mass spectrometry (ICP-MS) operating in fast time-resolved analysis (TRA) mode. The technique is known as single-cell (SC)-ICP-MS. Phosphorus, sulfur, magnesium, zinc, and iron were detected in the three types of cell. The elemental composition of yeast and green alga obtained by SC-ICP-MS was consistent with results obtained from conventional ICP-MS measurements following acid digestion of the cells. Slight differences were found in the measured values between SC-ICP-MS and the conventional ICP-MS results for RBC. However, the SC-ICP-MS results for S and Fe in RBC were closer to the estimated values for these elements that were calculated from the level of hemoglobin in RBCs. The data suggest that SC-ICP-MS is suitable for the analysis of various cell types, namely, fungus, plant, and animal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号