In order to avoid the overflow problem of network flow table caused by hackers attacking the network in the process of using the network, a method for overflow attack defense of SDN network flow table based on stochastic differential equation is proposed. In this method, the stochastic differential equation is first proposed, and the drift coefficient and diffusion coefficient of the equation are expanded and adjusted by Taylor. By using the limit theorem, the spillover attack of SDN network is weakly converged to an approximate two-dimensional Markov diffusion process, and the improved stochastic differential equation is obtained. Then, according to the stochastic nature of SDN network attack, the stochastic differential equation is transformed into an amplitude equation, which is based on the amplitude. The equation establishes a SDN attack detection scheme based on flow table statistics, which detects the spillover attacks of SDN network flow tables. Finally, according to the test results, it is proposed to use other switches instead of network flow table overflow switches to control the data upload rate, thus reducing the possibility of network crash and meeting the attack defense requirements of flow table overflow. The simulation results show that the proposed method has better detection performance and shorter running time, and can provide help for network security related work.
A kinetic model of the rigid and flexible coupling system for terminally sensitive submunition is set up with Kane's method. The parachute is considered as a flexible body, the flexible displacement is expressed with modal spread method, the position of the parachute is expressed with a hybrid coordinate method, and the kinematics of the terminally sensitive submunition is analyzed. Ten generalized coordinates relative to the attitude of the terminally sensitive submunition are chosen, and the correlative generalized active forces, the generalized inertial forces, the generalized internal forces are calculated in turn. On the base of the Kane's method, the ten degrees of freedom dynamic equations for the coupled terminally sensitive submunition are finally set up. This model can be used to expediently simulate and analyze accurately the exterior ballistic trajectory of terminally sensitive submunition, and provide the overall design of the terminally sensitive submunition with some helpful references. 相似文献
Effects of Growth Substance Applications (Triazole) on Yield Formation and Grain Quality of Winter Rape Field trials have been conducted for two years (1986/87 and 1987/88) with cv. Lirabon (low erucic acid and low glucosinolate content). At several growth stages uptil beginning of flowering and at different rates the triazole RSW 0411 (Bayer) was applied. The problem was to investigate growth regulator effects on agronomically important traits, the utilization of yield potential and on seed quality. Applications during stem elongation reduced plant height phoma lingam infestation and lodging. Branching and numbers of pods/plant increased, partly on costs of pod filling. In 1986/87 grain yields/ha indicated (not significant) increases without any effects on grain quality. In 1987/88 grain yield/ha decreased significantly combined with increasing protein- and glucosinolate contents. 相似文献
The topology of an ad hoc network has a significant impact on its performance in that a dense topology may induce high interference and low capacity, while a sparse topology is vulnerable to link failure and network partitioning. Topology control aims to maintain a topology that optimizes network performance while minimizing energy consumption. Existing topology control algorithms utilize either a purely centralized or a purely distributed approach. A centralized approach, although able to achieve strong connectivity (k-connectivity for k /spl ges/ 2), suffers from scalability problems. In contrast, a distributed approach, although scalable, lacks strong connectivity guarantees. We propose a hybrid topology control framework, cluster-based topology control (CLTC) that achieves both scalability and strong connectivity. By varying the algorithms utilized in each of the three phases of the framework, a variety of optimization objectives and topological properties can be achieved. In this paper, we present the CLTC framework; describe topology control algorithms based on CLTC and prove that k-connectivity is achieved using those algorithms; analyze the message complexity of an implementation of CLTC, namely, CLTC-A, and present simulation studies that evaluate the effectiveness of CLTC-A for a range of networks. 相似文献
A new spectral multigrid method (SMG) combined with the multilevel fast multipole method (MLFMM) is proposed for solving electromagnetic wave scattering problems. The MLFMM is used to speed up the matrix-vector product operations and the SMG is employed to accelerate the convergence rate of the Krylov iteration. Unlike traditional algebraic multigrid methods (AMG), the spectral multigrid method is an algebraic two-grid cycle built on a preconditioned Krylov iterative method that is used as the smoother, and the grid transfer operators are defined using the spectral information of the preconditioned matrix. Numerical experiments indicate that this class of multigrid method is very effective with the MLFMM and can reduce both the iteration number and the overall simulation time significantly. 相似文献