首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   20篇
  国内免费   5篇
综合类   1篇
化学工业   100篇
金属工艺   1篇
机械仪表   6篇
建筑科学   8篇
能源动力   14篇
轻工业   54篇
水利工程   5篇
石油天然气   1篇
无线电   39篇
一般工业技术   88篇
冶金工业   13篇
原子能技术   3篇
自动化技术   44篇
  2024年   1篇
  2023年   13篇
  2022年   23篇
  2021年   47篇
  2020年   27篇
  2019年   23篇
  2018年   21篇
  2017年   29篇
  2016年   21篇
  2015年   17篇
  2014年   10篇
  2013年   22篇
  2012年   15篇
  2011年   23篇
  2010年   16篇
  2009年   18篇
  2008年   18篇
  2007年   9篇
  2006年   4篇
  2001年   1篇
  1999年   3篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1994年   2篇
  1990年   1篇
  1988年   2篇
  1978年   1篇
排序方式: 共有377条查询结果,搜索用时 796 毫秒
371.
Tailoring the electrical conductivity of functional ceramics by introducing dislocations is a comparatively recent research focus, and its merits were demonstrated through mechanical means. Especially bulk deformation at high temperatures is suggested to be a promising method to introduce a high dislocation density. So far, however, controlling dislocation generation and their annihilation remains difficult. Although deforming ceramics generate dislocations on multiple length scales, dislocation annihilation at the same time appears to be the bottleneck to use the full potential of dislocations-tailoring the electrical conductivity. Here, we demonstrate the control over these aspects using a micromechanical approach on yttria-stabilized zirconia - YSZ. Targeted indentation well below the dislocation annihilation temperature resulted in extremely dense dislocation networks, visualized by chemical etching and electron channeling contrast imaging. Microcontact-impedance measurements helped evaluate the electrical response of operating individual slip systems. A significant conductivity enhancement is revealed in dislocation-rich regions compared to pristine ones in fully stabilized YSZ. This enhancement is mainly attributed to oxygen ionic conductivity. Thus, the possibility of increasing the conductivity is illustrated and provides a prospect to transfer the merits of dislocation-tuned electrical conductivity to solid oxygen electrolytes.  相似文献   
372.
A key consideration for the successful operation of hybrid energy systems will be the environmental stability of materials used for their construction, particularly when experiencing service environments containing water vapor at high temperatures. Here, we report results from the characterization of siliconized silicon carbide (Si-SiC) prepared via binder jet additive manufacturing and reactive silicon melt infiltration after being exposed to environments representative of those in solid oxide fuel cell (SOFC) anodes, and to exhaust gases inside a microturbine operating on natural gas. In both cases, it was found that oxide scales formed on the surface and that these scales were dense, continuous, and well-bonded to the substrates, although there was evidence of transverse and longitudinal cracking most likely as a result of mismatches in the thermal expansion of the scale and the substrate. Measured values of the thickness of the oxide scale were compared to those predicted by parabolic oxidation kinetics of silicon, but the potential effects of silica volatilization induced by water vapor, and silica reduction when exposed to hydrogen are discussed. The overall results showed that the oxide scale is expected to be protective under the conditions of hybrid power generation systems.  相似文献   
373.
This paper considers an adaptive event-triggered robust H control for the Takagi–Sugeno (T-S) fuzzy under the networked Markov jump systems (NMJSs) with time-varying delay. First, a new adaptive event-triggered scheme is developed to guarantee the T-S fuzzy NMJSs, and as a result, communication energy consumption reduced while device efficiency is maintained. Besides, an asynchronous operation method is adopted to deal with the mismatched premise variables between the fuzzy system and the fuzzy controller. One of the main objectives of this article is to construct the fuzzy state-feedback controller (mode-dependent) in a closed-loop form for stochastic stability for all admissible parameter uncertainties with an H performance index. Different from the conventional triggering mechanism, in this paper, the parameters of the triggering function are based on a new adaptive law that is obtained online rather than a predefined constant. To achieve the less conservative control design, a new type of stochastic Lyapunov–Krasovskii functional is designed by decomposing method, in which the delay interval transforms into various equidistant subintervals in terms of linear matrix inequalities. An example of a truck-trailer application is used to demonstrate the effectively of the proposed algorithms.  相似文献   
374.
This study is designed to develop Artificial Intelligence (AI) based analysis tool that could accurately detect COVID-19 lung infections based on portable chest x-rays (CXRs). The frontline physicians and radiologists suffer from grand challenges for COVID-19 pandemic due to the suboptimal image quality and the large volume of CXRs. In this study, AI-based analysis tools were developed that can precisely classify COVID-19 lung infection. Publicly available datasets of COVID-19 (N = 1525), non-COVID-19 normal (N = 1525), viral pneumonia (N = 1342) and bacterial pneumonia (N = 2521) from the Italian Society of Medical and Interventional Radiology (SIRM), Radiopaedia, The Cancer Imaging Archive (TCIA) and Kaggle repositories were taken. A multi-approach utilizing deep learning ResNet101 with and without hyperparameters optimization was employed. Additionally, the features extracted from the average pooling layer of ResNet101 were used as input to machine learning (ML) algorithms, which twice trained the learning algorithms. The ResNet101 with optimized parameters yielded improved performance to default parameters. The extracted features from ResNet101 are fed to the k-nearest neighbor (KNN) and support vector machine (SVM) yielded the highest 3-class classification performance of 99.86% and 99.46%, respectively. The results indicate that the proposed approach can be better utilized for improving the accuracy and diagnostic efficiency of CXRs. The proposed deep learning model has the potential to improve further the efficiency of the healthcare systems for proper diagnosis and prognosis of COVID-19 lung infection.  相似文献   
375.
376.
The analysis of magnetized micro–nanoliquid flows generated by the movable disk is executed in this study. The disk is contained under the porous zone influence. The heat generation, heat sink, and temperature-dependent conductance analysis are reported through the energy equation. The activation energy in terms of a chemical reaction is incorporated through the mass equation. The flow model is normalized through the implementation of similarity transformations. The numerical algorithm Runge–Kutta–Fehlberg is used to solve the reduced system. Results are plotted graphically and in tabular format to investigate the velocity, thermal, and concentration fields. Numeric benchmarks of couple and shear stresses, thermal and concentration rates are also computed. The temperature is augmented against the incremented thermophoretic, variable conductivity, and Brownian movement parameters. The presence of variable conductivity parameter resulted in a weaker rate of heat transportation. The heat transportation rate is boosted with an incremented Prandtl number.  相似文献   
377.
Batteries and supercapacitors continue to be one of the most researched topics in the class of energy storage devices. The continuous development of battery and supercapacitor cell components has shown promising development throughout the years—from slabs of pure metal to porous and tailored structures of metal-based active materials. In this direction, metal–organic frameworks (MOFs) serve great advantages in improving the properties and structure of the derived metal-based active materials. This research provides a novel electrode material, Ni–Co–Se/C@CuO, derived from Ni–Co-MOF integrated with pre-oxidized Cu mesh. The superior electrochemical performance of Ni–Co–Se/C@CuO over Ni–Co-MOF@CuO is evident through its higher specific capacity, lower resistivity, richer redox activity, and more favorable diffusion-dominated storage mechanism. When assembled as a hybrid supercapacitor (HSC), the hybrid device using rGO and Ni–Co–Se/C@CuO as electrodes exhibits a high energy density of 42 W h kg−1 at a power density of 2 kW kg−1, and maintains its capacity retention even after 20 000 cycles. The improved capacity performance is also evaluated using first-principle investigations, revealing that the unique and preserved heterostructure of Ni–Co–Se/C@CuO portrays enhanced metallic properties. Such evaluation of novel electrodes with superior properties may benefit next-generation electrodes for supercapacitor devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号