首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100342篇
  免费   7949篇
  国内免费   4219篇
电工技术   5795篇
技术理论   5篇
综合类   6633篇
化学工业   17161篇
金属工艺   5990篇
机械仪表   6185篇
建筑科学   8735篇
矿业工程   2894篇
能源动力   2714篇
轻工业   6101篇
水利工程   1820篇
石油天然气   5655篇
武器工业   857篇
无线电   10719篇
一般工业技术   11851篇
冶金工业   5023篇
原子能技术   1185篇
自动化技术   13187篇
  2024年   394篇
  2023年   1649篇
  2022年   2742篇
  2021年   3813篇
  2020年   2957篇
  2019年   2476篇
  2018年   2853篇
  2017年   3237篇
  2016年   2786篇
  2015年   3759篇
  2014年   4716篇
  2013年   5672篇
  2012年   6262篇
  2011年   6768篇
  2010年   5838篇
  2009年   5714篇
  2008年   5508篇
  2007年   5316篇
  2006年   5605篇
  2005年   4935篇
  2004年   3331篇
  2003年   2797篇
  2002年   2684篇
  2001年   2422篇
  2000年   2533篇
  1999年   2851篇
  1998年   2302篇
  1997年   1907篇
  1996年   1931篇
  1995年   1572篇
  1994年   1277篇
  1993年   911篇
  1992年   731篇
  1991年   572篇
  1990年   419篇
  1989年   351篇
  1988年   287篇
  1987年   192篇
  1986年   132篇
  1985年   92篇
  1984年   60篇
  1983年   38篇
  1982年   42篇
  1981年   35篇
  1980年   25篇
  1979年   9篇
  1978年   2篇
  1976年   1篇
  1965年   2篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The sluggish kinetics of Faradaic reactions in bulk electrodes is a significant obstacle to achieve high energy and power density in energy storage devices. Herein, a composite of LiFePO4 particles trapped in fast bifunctional conductor rGO&C@Li3V2(PO4)3 nanosheets is prepared through an in situ competitive redox reaction. The composite exhibits extraordinary rate capability (71 mAh g?1 at 15 A g?1) and remarkable cycling stability (0.03% decay per cycle over 1000 cycles at 10 A g?1). Improved extrinsic pseudocapacitive contribution is the origin of fast kinetics, which endows this composite with high energy and power density, since the unique 2D nanosheets and embedded ultrafine LiFePO4 nanoparticles can shorten the ion and electron diffusion length. Even applied to Li‐ion hybrid capacitors, the obtained devices still achieve high power density of 3.36 kW kg?1 along with high energy density up to 77.8 Wh kg?1. Density functional theory computations also validate that the remarkable rate performance is facilitated by the desirable ionic and electronic conductivity of the composite.  相似文献   
972.
Bone plates have been applied to fix fractures for over a hundred years. Metal plates are the gold standard. However, an increasing number of clinical practices and animal experiments have shown that metal plates have had incidents of failure due to their rigid fixation and long‐term complications. Degradable composites present the advantages of a lower elastic modulus and absorbable properties but are unsuitable for load‐bearing applications. Nondegradable bone plates composed of a nanohydroxyapatite/polyamide 66/glass fiber (n‐HA/PA66/GF) composite are prepared, which have enough strength and a low elastic modulus for an internal fixation device. To better assess its function as a bone plate, animal experiments are conducted using a canine load‐bearing femur fracture model. The results show that the n‐HA/PA66/GF plate can fix fractures effectively. Gross observation, radiographic films, and histological analysis all show that the n‐HA/PA66/GF plate leads to a secondary (indirect) union with obvious callus formation, whereas the titanium plate leads to primary (direct) union due to rigid fixation. Furthermore, the histological results reveal that new bone grows at the interface and that the n‐HA/PA66/GF plate can integrate with native bone tissue. Consequently, the n‐HA/PA66/GF composite shows good potential as a bone plate to fix loading‐bearing bone fractures.  相似文献   
973.
Associative memory is one of the significant characteristics of the biological brain. However, it has yet to be realized in a large memristor array due to the high requirements on the memristor device. In this work, the multilevel memristor cell is optimized by employing an electro‐thermal modulation layer. Memristor devices show both high resistance, cell‐to‐cell uniformity, and multilevel resistive switching behaviors with good reliability. A Hopfield neural network is experimentally demonstrated on a 1k memristor array that is capable of realizing the associative memory function for emotion image recovery. By using both asynchronous and synchronous refresh schemes, complete emotion images can be recalled from partial information.  相似文献   
974.
It is essential to understand the size scaling effects on the mechanical properties of graphene networks to realize the potential mechanical applications of graphene assemblies. Here, a “highly dense‐yet‐nanoporous graphene monolith (HPGM)” is used as a model material of graphene networks to investigate the dependence of mechanical properties on the intrinsic interplanar interactions and the extrinsic specimen size effects. The interactions between graphene sheets could be enhanced by heat treatment and the plastic HPGM is transformed into a highly elastic network. A strong size effect is revealed by in situ compression of micro‐ and nanopillars inside electron microscopes. Both the modulus and strength are drastically increased as the specimen size reduces to ≈100 nm, because of the reduced weak links in a small volume. Molecular dynamics simulations reveal the deformation mechanism involving slip‐stick sliding, bending, buckling of graphene sheets, collapsing, and densification of graphene cells. In addition, a size‐dependent brittle‐to‐ductile transition of the HPGM nanopillars is discovered and understood by the competition between volumetric deformation energy and critical dilation energy.  相似文献   
975.
To date, various stretchable conductors have been fabricated, but simultaneous realization of the transparency, high stretchability, electrical conductivity, self‐healing capability, and sensing property through a simple, fast, cost‐efficient approach is still challenging. Here, α‐lipoic acid (LA), a naturally small biological molecule found in humans and animals, is used to fabricate transparent (>85%), electrical conductivity, highly stretchable (strain up to 1100%), and rehealable (mechanical healing efficiency of 86%, electrical healing efficiency of 96%) ionic conductor by solvent‐free one‐step polymerization. Furthermore, the ionic conductors with appealing sensitivity can be served as strain sensors to detect and distinguish various human activities. Notably, this ionic conductor can be fully recycled and reprocessed into new ionic conductors or adhesives by a direct heating process, which offers a promising prospect in great reduction of electronic wastes that have brought acute environmental pollution. In consideration of the extremely facile preparation process, biological available materials, satisfactory functionalities, and full recyclability, the emergence of LA‐based ionic conductors is believed to open up a new avenue for developing sustainable and wearable electronic devices in the future.  相似文献   
976.
Rechargeable alkali metal (i.e., lithium, sodium, potassium)-based batteries are considered as vital energy storage technologies in modern society. However, the traditional liquid electrolytes applied in alkali metal-based batteries mainly consist of thermally unstable salts and highly flammable organic solvents, which trigger numerous accidents related to fire, explosion, and leakage of toxic chemicals. Therefore, exploring non-flammable electrolytes is of paramount importance for achieving safe batteries. Although replacing traditional liquid electrolytes with all-solid-state electrolytes is the ultimate way to solve the above safety issues, developing non-flammable liquid electrolytes can more directly fulfill the current needs considering the low ionic conductivities and inferior interfacial properties of existing all-solid-state electrolytes. Moreover, the electrolyte leakage concern can be further resolved by gelling non-flammable liquid electrolytes to obtain quasi-solid electrolytes. Herein, a comprehensive review of the latest progress in emerging non-flammable liquid electrolytes, including non-flammable organic liquid electrolytes, aqueous electrolytes, and deep eutectic solvent-based electrolytes is provided, and systematically introduce their flame-retardant mechanisms and electrochemical behaviors in alkali metal-based batteries. Then, the gelation techniques for preparing quasi-solid electrolytes are also summarized. Finally, the remaining challenges and future perspectives are presented. It is anticipated that this review will promote a safety improvement of alkali metal-based batteries.  相似文献   
977.
Lymph nodes are assessed routinely in clinical practice and their size is followed throughout radiation or chemotherapy to monitor the effectiveness of cancer treatment. This paper presents a robust learning-based method for automatic detection and segmentation of solid lymph nodes from CT data, with the following contributions. First, it presents a learning based approach to solid lymph node detection that relies on marginal space learning to achieve great speedup with virtually no loss in accuracy. Second, it presents a computationally efficient segmentation method for solid lymph nodes (LN). Third, it introduces two new sets of features that are effective for LN detection, one that self-aligns to high gradients and another set obtained from the segmentation result. The method is evaluated for axillary LN detection on 131 volumes containing 371 LN, yielding a 83.0% detection rate with 1.0 false positive per volume. It is further evaluated for pelvic and abdominal LN detection on 54 volumes containing 569 LN, yielding a 80.0% detection rate with 3.2 false positives per volume. The running time is 5-20 s per volume for axillary areas and 15-40 s for pelvic. An added benefit of the method is the capability to detect and segment conglomerated lymph nodes.  相似文献   
978.
不同的曝光方式适应不同的曝光工艺,对接触接近式曝光机的曝光方式进行了研究,分析了不同曝光方式适用的场合。并给出了一个通过改进曝光方式实现曝光工艺的成功实例,进一步证明了将产品生产工艺知识融入到半导体设备设计研发过程中的必要性。  相似文献   
979.
基于嵌入式的物流管理无线PDA终端   总被引:1,自引:0,他引:1  
系统实现了一个物流管理系统,系统由上位机程序、单片机、无线通信模块和PDA终端组成。上位机和PDA终端同时实现货物入库、出库及查询等功能。以数字化和自动化为理念,针对当前物流人工管理系统效率低问题,设计了一套解决方案,取得了较为理想的结果。  相似文献   
980.
Despite recent progress in photo‐electrochemical (PEC) water oxidation systems for TiO2‐based photoanodes, PEC performance improvement is still seriously hampered due to poor carrier transport efficiency and sluggish surface water oxidation kinetics of pristine TiO2. Herein, for the first time a brand new metal–organic framework (MOF)‐derived Co3C nanosheet with narrow bandgap energy is demonstrated, to effectively sensitize TiO2 hollow cages as a heterostructure photoanode for PEC water oxidation. It is found that MOF‐derived Co3C nanosheet with narrow bandgap characteristic can simultaneously accelerate the surface water oxidation kinetics and extend the light harvesting range of pristine TiO2. Meanwhile, a uniquely matched type‐II heterojunction constructed between MOF‐derived Co3C and TiO2 results in an evidently spontaneous e?/h+ separation. MOF‐derived Co3C/TiO2 heterostructure photoanodes bring about drastically improved PEC water oxidation performance. Specifically, MOF‐derived Co3C‐3/TiO2 photoanode with an optimized content of Co3C achieves the highest photocurrent density and charge separation efficiency of 2.6 mA cm?2 and 92.6% at 1.23 V versus reversible hydrogen electrode, corresponding to 201% and 152% improvement compared with pristine TiO2 nanocages. The ingeniously prepared MOF‐derived Co3C carbide with narrow bandgap energy as a cocatalyst paves new way to construct potentially high performance solar‐energy conversion system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号