首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2538篇
  免费   129篇
  国内免费   9篇
电工技术   35篇
综合类   6篇
化学工业   560篇
金属工艺   57篇
机械仪表   54篇
建筑科学   74篇
矿业工程   7篇
能源动力   95篇
轻工业   242篇
水利工程   12篇
石油天然气   12篇
无线电   421篇
一般工业技术   441篇
冶金工业   229篇
原子能技术   17篇
自动化技术   414篇
  2024年   10篇
  2023年   56篇
  2022年   92篇
  2021年   145篇
  2020年   110篇
  2019年   126篇
  2018年   116篇
  2017年   100篇
  2016年   153篇
  2015年   81篇
  2014年   124篇
  2013年   187篇
  2012年   126篇
  2011年   152篇
  2010年   110篇
  2009年   108篇
  2008年   95篇
  2007年   72篇
  2006年   54篇
  2005年   51篇
  2004年   38篇
  2003年   40篇
  2002年   44篇
  2001年   34篇
  2000年   32篇
  1999年   27篇
  1998年   74篇
  1997年   55篇
  1996年   27篇
  1995年   24篇
  1994年   18篇
  1993年   22篇
  1992年   19篇
  1991年   14篇
  1990年   16篇
  1989年   11篇
  1988年   10篇
  1987年   11篇
  1986年   10篇
  1985年   8篇
  1984年   6篇
  1983年   8篇
  1982年   12篇
  1981年   7篇
  1979年   8篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1973年   3篇
  1968年   2篇
排序方式: 共有2676条查询结果,搜索用时 0 毫秒
61.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
62.
Li1+x (Ni1/3Mn1/3Co1/3)1−x O2 (NMC) oxides are among the most promising positive electrode materials for future lithium–ion batteries. A voltage “plateau” was observed on the first galvanostatic charging curve of NMC in the extended voltage region positive to 4.5 V vs. Li/Li+ for compounds with x > 0 (overlithiated compounds). Differences were observed in the cycling stability of the overlithiated and stoichiometric (x = 0) NMC oxides in this potential region. A differential plot of the charge vs. potential profile in the first cycle revealed that, for the overlithiated compounds, a large irreversible oxidative peak arises positive to 4.5 V vs. Li/Li+, while in the same potential region only a small peak due to the electrolyte oxidation is detected for the stoichiometric material. Differential Electrochemical Mass Spectrometry (DEMS) was used to investigate the high voltage region for both compounds and experimental evidence for oxygen evolution was provided for the overlithiated compounds at potentials positive to 4.5 V vs. Li/Li+. No oxygen evolution was detected for the stoichiometric compound.  相似文献   
63.
A new strategy for the selective coating of tin sulfide (SnS) on the surface of moth‐eye patterned (MEP) conducting polymer film is studied by considering the optical properties of the antireflective moth‐eye pattern and flexibility of polymer films. The semiconductor SnS is selectively coated on the surface of MEP microdomes of poly(3,4‐ethylenedioxythiophene) poly(styrene‐sulfonate) (PEDOT:PSS) film. The SnS coated MEP film is obtained by using pore selectively SnS thin layer functionalized polystyrene honeycomb‐patterned porous (HCP) film as a template. Aqueous PEDOT:PSS solution is poured on the SnS functionalized HCP films and detached for the fabrication of SnS coated MEP films. The films show a satisfactory photo‐responsive property under solar stimulated light illumination due to the antireflective MEP structure of PEDOT film and homogenous SnS coating on the surface of the conducting polymer.  相似文献   
64.
The atmospheric corrosion of marble was evaluated in terms of SO2 concentration as air pollution and climatic factors such as rainfall, relative humidity, temperature and so on under the field exposure. Marble of calcite type (CaCO3) was exposed to outdoor atmospheric environment with and without a rain shelter at four test sites in the southern part of Vietnam for 3-month, 1- and 2-year periods from July 2001 to September 2003. The thickness loss of marble was investigated gravimetrically. X-ray diffraction and X-ray fluorescent methods were applied to study corrosion products on marble. The corrosion product of marble was only gypsum (CaSO4 · 2H2O) and was washed out by rain under the unsheltered exposure condition. It was found that the most substantial factors influencing the corrosion of marble were rainfall, SO2 concentration in the air and relative humidity. Based on the results obtained, we estimated the dose-response functions for the atmospheric corrosion of marble in the southern part of Vietnam.  相似文献   
65.
The molecular structure and rheological properties of high-amylose water caltrop (Trapa bispinosa Roxb.) starch cultivated in Vietnam were investigated. The water caltrop starch had 47.1% amylose and its molecular weight (Mw) was (4.77±0.27)×106 g/mol, whereas the Mw was (2.07±0.10)×107 g/mol for amylopectin. The average chain length of amylopectin was DPn=19.0 and the proportions of A, B1, B2, and B3 chains were 28.2, 50.3, 13.1, and 8.5%, respectively. The DSC thermogram of the water caltrop starch was broadly endothermic, with 2 distinct endothermic peaks at 73.6 and 80.7°C. Gel formation of water caltrop starch occurred rapidly, with an extremely high storage modulus up to approximately 1,200 Pa. High-amylose water caltrop starch paste had an extremely high final viscosity compared to that of other cereal starches. These rheological behaviors may have been due to the extremely high amylose content.  相似文献   
66.
67.
Vector-borne diseases are among those most sensitive to climate because the ecology of vectors and the development rate of pathogens within them are highly dependent on environmental conditions. Bluetongue (BT), a recently emerged arboviral disease of ruminants in Europe, is often cited as an illustration of climate''s impact on disease emergence, although no study has yet tested this association. Here, we develop a framework to quantitatively evaluate the effects of climate on BT''s emergence in Europe by integrating high-resolution climate observations and model simulations within a mechanistic model of BT transmission risk. We demonstrate that a climate-driven model explains, in both space and time, many aspects of BT''s recent emergence and spread, including the 2006 BT outbreak in northwest Europe which occurred in the year of highest projected risk since at least 1960. Furthermore, the model provides mechanistic insight into BT''s emergence, suggesting that the drivers of emergence across Europe differ between the South and the North. Driven by simulated future climate from an ensemble of 11 regional climate models, the model projects increase in the future risk of BT emergence across most of Europe with uncertainty in rate but not in trend. The framework described here is adaptable and applicable to other diseases, where the link between climate and disease transmission risk can be quantified, permitting the evaluation of scale and uncertainty in climate change''s impact on the future of such diseases.  相似文献   
68.
This study has examined the dynamics (in terms of levels and serovar diversity) of Salmonella in the “dual litter environment” that occurs within a single shed as a result of a management practice common in Australia. The study also looked at the physical parameters of the litter (pH, moisture content, water activity and litter temperature) as a means of understanding the Salmonella dynamics in these litter environments. The Australian practice results in the brooder end of the shed having new litter each cycle while the grow-out end has re-used litter (a “dual litter environment”). Two farms that adopted this partial litter re-use practice were studied over one full broiler cycle each. Litter was sampled weekly for the levels (and serovars) of Salmonella during a farming cycle. There was a trend for lower levels of Salmonella (and a lower Salmonella serovar) diversity in the re-used litter environment as compared with the new litter environment. Of the physical parameters examined, it would appear that the lower water activity associated with the re-used litter may contribute to the Salmonella dynamics in the dual environment.  相似文献   
69.
A multiphase pore scale network model was developed to describe mass transfer in apple fruit. The 3D microscale geometry of the tissue was reconstructed from synchrotron radiation tomography images. Individual cells and pores were identified using a watershed segmentation procedure on a Euclidean distance map of the tissue microstructure. Further morphological characteristics of each individual pore, including its volume, connections to the neighbors and the connected area between the pore and its neighbors, were determined. The tissue was represented by a network of nodes (simplified individual pores and cells) that were interconnected by tubes. The transport of the respiratory gases O2 and CO2 between two nodes was modelled using diffusion laws and irreversible thermodynamics, while respiration was taken into account in the individual cellular nodes. A numerical procedure was applied to simulate the gas transport within the discrete network and to compute the local diffusivities of the links in the network. The predicted overall gas diffusivities compared well to experimental data and results computed from a microscale continuum model, thereby validating the pore scale network model. This approach is a computationally attractive alternative to a continuum multiphase approach for modelling gas transport in fruit.  相似文献   
70.
A hybrid of graphene and conducting polymer holds great potential as the active materials for high performance chemical sensor application. In this work, a thin hybrid film of reduced graphene oxide (RG-O) and poly(3,4-ethylenedioxythiophene) (PEDOT) was fabricated by means of vapor phase polymerization and explored as active material for chemical sensors. The chemical sensors based on hybrid film of RG-O and PEDOT are capable of detecting electrical signals caused by the absorption of trace levels of different analyte vapors with high sensitivity, selectivity and fast response.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号