首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   358791篇
  免费   19941篇
  国内免费   714篇
电工技术   8211篇
综合类   1417篇
化学工业   69431篇
金属工艺   10829篇
机械仪表   9820篇
建筑科学   10068篇
矿业工程   1036篇
能源动力   9417篇
轻工业   39233篇
水利工程   2899篇
石油天然气   3772篇
武器工业   9篇
无线电   46400篇
一般工业技术   71480篇
冶金工业   57267篇
原子能技术   5479篇
自动化技术   32678篇
  2021年   3116篇
  2020年   3652篇
  2019年   5723篇
  2018年   6942篇
  2017年   6985篇
  2016年   7569篇
  2015年   6853篇
  2014年   8646篇
  2013年   20116篇
  2012年   10274篇
  2011年   12526篇
  2010年   10891篇
  2009年   12041篇
  2008年   11762篇
  2007年   11467篇
  2006年   10258篇
  2005年   9392篇
  2004年   9292篇
  2003年   8937篇
  2002年   8719篇
  2001年   8691篇
  2000年   8247篇
  1999年   8071篇
  1998年   17882篇
  1997年   12995篇
  1996年   10305篇
  1995年   8060篇
  1994年   7374篇
  1993年   7137篇
  1992年   5452篇
  1991年   5204篇
  1990年   5090篇
  1989年   4959篇
  1988年   4814篇
  1987年   4058篇
  1986年   4200篇
  1985年   4879篇
  1984年   4438篇
  1983年   4188篇
  1982年   3760篇
  1981年   3959篇
  1980年   3609篇
  1979年   3582篇
  1978年   3327篇
  1977年   3968篇
  1976年   4993篇
  1975年   2986篇
  1974年   2850篇
  1973年   3033篇
  1972年   2413篇
排序方式: 共有10000条查询结果,搜索用时 468 毫秒
61.
Tryptophan halogenases are found in diverse organisms and catalyze regiospecific halogenation. They play an important role in the biosynthesis of halogenated indole alkaloids, which are biologically active and of therapeutic importance. Here, a tryptophan 6-halogenase (SatH) from Streptomyces albus was characterized by using a whole-cell reaction system in Escherichia coli. SatH showed substrate specificity for chloride and bromide ions, leading to regiospecific halogenation at the C6-position of l -tryptophan. In addition, SatH exhibited higher performance in bromination than that of previously reported tryptophan halogenases in the whole-cell reaction system. Through structure-based protein mutagenesis, it has been revealed that two consecutive residues, A78/V79 in SatH and G77/I78 in PyrH, are key determinants in the regioselectivity difference between tryptophan 6- and 5-halogenases. Substituting the AV with GI residues switched the regioselectivity of SatH by moving the orientation of tryptophan. These data contribute to an understanding of the key residues that determine the regioselectivity of tryptophan halogenases.  相似文献   
62.
The diagnosis and treatment of prostate cancer (PCa) is a major health-care concern worldwide. This cancer can manifest itself in many distinct forms and the transition from clinically indolent PCa to the more invasive aggressive form remains poorly understood. It is now universally accepted that glycan expression patterns change with the cellular modifications that accompany the onset of tumorigenesis. The aim of this study was to investigate if differential glycosylation patterns could distinguish between indolent, significant, and aggressive PCa. Whole serum N-glycan profiling was carried out on 117 prostate cancer patients’ serum using our automated, high-throughput analysis platform for glycan-profiling which utilizes ultra-performance liquid chromatography (UPLC) to obtain high resolution separation of N-linked glycans released from the serum glycoproteins. We observed increases in hybrid, oligomannose, and biantennary digalactosylated monosialylated glycans (M5A1G1S1, M8, and A2G2S1), bisecting glycans (A2B, A2(6)BG1) and monoantennary glycans (A1), and decreases in triantennary trigalactosylated trisialylated glycans with and without core fucose (A3G3S3 and FA3G3S3) with PCa progression from indolent through significant and aggressive disease. These changes give us an insight into the disease pathogenesis and identify potential biomarkers for monitoring the PCa progression, however these need further confirmation studies.  相似文献   
63.
Angiotensin converting enzyme 2 (ACE2) is the human receptor that interacts with the spike protein of coronaviruses, including the one that produced the 2020 coronavirus pandemic (COVID-19). Thus, ACE2 is a potential target for drugs that disrupt the interaction of human cells with SARS-CoV-2 to abolish infection. There is also interest in drugs that inhibit or activate ACE2, that is, for cardiovascular disorders or colitis. Compounds binding at alternative sites could allosterically affect the interaction with the spike protein. Herein, we review biochemical, chemical biology, and structural information on ACE2, including the recent cryoEM structures of full-length ACE2. We conclude that ACE2 is very dynamic and that allosteric drugs could be developed to target ACE2. At the time of the 2020 pandemic, we suggest that available ACE2 inhibitors or activators in advanced development should be tested for their ability to allosterically displace the interaction between ACE2 and the spike protein.  相似文献   
64.
Vertical arrays of nanostructures (NSs) are emerging as promising platforms for probing and manipulating live mammalian cells. The broad range of applications requires different types of interfaces, but cell settling on NS arrays is not yet fully controlled and understood. Cells are both seen to deform completely into NS arrays and to stay suspended like tiny fakirs, which have hitherto been explained with differences in NS spacing or density. Here, a better understanding of this phenomenon is provided by using a model that takes into account the extreme membrane deformation needed for a cell to settle into a NS array. It is shown that, in addition to the NS density, cell settling depends strongly on the dimensions of the single NS, and that the settling can be predicted for a given NS array geometry. The predictive power of the model is confirmed by experiments and good agreement with cases from the literature. Furthermore, the influence of cell‐related parameters is evaluated theoretically and a generic method of tuning cell settling through surface coating is demonstrated experimentally. These findings allow a more rational design of NS arrays for the numerous exciting biological applications where the mode of cell settling is crucial.  相似文献   
65.
66.
This paper provides a fundamental analysis of a power supply and rectifiers for wireless power transfer using magnetic resonant coupling (MRC). MRC enables efficient wireless power transfer over middle‐range transfer distances. MRC for wireless power transfer should operate at a high frequency in the industry science medical band, such as 13.56 MHz, because the size of the transfer device decreases at higher transfer frequencies. Therefore, the output frequency of the power supply on the transmitting side should be 13.56 MHz. In addition, the rectifier on the receiving side is operated at a high frequency. This paper focuses on the reflected power in the power supply and rectifiers. Thus, the parametric design method is clarified for the power supply, including a low‐pass filter to match the output, the impedance of the power supply with the characteristic impedance of the transmission line. In addition, the effects on the rectifiers of silicon carbide and gallium nitride diodes are confirmed by performing an experiment and a loss analysis.  相似文献   
67.
Twin screw granulation (TSG) is a new process of interest to the pharmaceutical community that can continuously wet granulate powders, doing so at lower liquid concentrations and with better product consistency than found by a high shear batch mixer. A considerable body of research has evolved over the short time since this process was introduced but generally with little comparison of results. A certain degree of confidence has been developed through these studies related to how process variables and many attributes of machinery configuration will affect granulation but some major challenges still lay ahead related to scalability, variations in the processing regimes related to degree of channel fill and the impact of wetting and granulation of complex powder formulations. This review examines the current literature for wet granulation processes studied in twin screw extrusion machinery, summarizing the influences of operational and system parameters affecting granule properties as well as strives to provide some practical observations to newly interested users of the technique.  相似文献   
68.
The selenol group of selenocysteine is much more nucleophilic than the thiol group of cysteine. Selenocysteine residues in proteins thus offer reactive points for rapid post-translational modification. Herein, we show that selenoproteins can be expressed in high yield and purity by cell-free protein synthesis by global substitution of cysteine by selenocysteine. Complete alkylation of solvent-exposed selenocysteine residues was achieved in 10 minutes with 4-chloromethylene dipicolinic acid (4Cl-MDPA) under conditions that left cysteine residues unchanged even after overnight incubation. GdIII−GdIII distances measured by double electron–electron resonance (DEER) experiments of maltose binding protein (MBP) containing two selenocysteine residues tagged with 4Cl-MDPA-GdIII were indistinguishable from GdIII−GdIII distances measured of MBP containing cysteine reacted with 4Br-MDPA tags.  相似文献   
69.
Bile acids have been reported as important cofactors promoting human and murine norovirus (NoV) infections in cell culture. The underlying mechanisms are not resolved. Through the use of chemical shift perturbation (CSP) NMR experiments, we identified a low-affinity bile acid binding site of a human GII.4 NoV strain. Long-timescale MD simulations reveal the formation of a ligand-accessible binding pocket of flexible shape, allowing the formation of stable viral coat protein–bile acid complexes in agreement with experimental CSP data. CSP NMR experiments also show that this mode of bile acid binding has a minor influence on the binding of histo-blood group antigens and vice versa. STD NMR experiments probing the binding of bile acids to virus-like particles of seven different strains suggest that low-affinity bile acid binding is a common feature of human NoV and should therefore be important for understanding the role of bile acids as cofactors in NoV infection.  相似文献   
70.
Combined photochemical arylation, “nuisance effect” (SNAr) reaction sequences have been employed in the design of small arrays for immediate deployment in medium-throughput X-ray protein–ligand structure determination. Reactions were deliberately allowed to run “out of control” in terms of selectivity; for example the ortho-arylation of 2-phenylpyridine gave five products resulting from mono- and bisarylations combined with SNAr processes. As a result, a number of crystallographic hits against NUDT7, a key peroxisomal CoA ester hydrolase, have been identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号