首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   14篇
化学工业   106篇
金属工艺   2篇
机械仪表   4篇
建筑科学   7篇
轻工业   80篇
无线电   11篇
一般工业技术   33篇
冶金工业   3篇
自动化技术   28篇
  2024年   1篇
  2023年   7篇
  2022年   20篇
  2021年   19篇
  2020年   11篇
  2019年   8篇
  2018年   4篇
  2017年   3篇
  2016年   11篇
  2015年   14篇
  2014年   14篇
  2013年   18篇
  2012年   15篇
  2011年   25篇
  2010年   16篇
  2009年   12篇
  2008年   13篇
  2007年   16篇
  2006年   15篇
  2005年   6篇
  2004年   8篇
  2003年   3篇
  2002年   1篇
  2001年   5篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1985年   1篇
排序方式: 共有274条查询结果,搜索用时 93 毫秒
51.
Amyloids are associated with severe degenerative diseases and show exceptional mechanical properties, in particular great stiffhess. Amyloid fibrils, forming protein nanotube structures, are elongated fibers with a diameter of ≈8 nm with a characteristic dense hydrogen-bond (H-bond)patterning in the form of beta-sheets (β-sheets). Here we report a series of molecular dynamics simulations to study mechanical failure properties of a twofold symmetric Aβ(l–40) amyloid fibril, a pathogen associated with Alzheimer’s disease. We carry out computational experiments to study the response of the amyloid fibril to compressive loading. Our investigations reveal atomistic details of the failure process, and confirm that the breakdown of H-bonds plays a critical role during the failure process of amyloid fibrils. We obtain a Young’s modulus of ≈12.43 GPa, in dose agreement with earlier experimental results. Our simulations show that failure by buck-ling and subsequent shearing in one of the layers initiates at ≈1% compressive strain, suggesting that amyloid fibrils can be rather brittle mechanical elements.  相似文献   
52.
In this work, a newly prepared cationic/free-radical photopolymer, which consists of two epoxies and a tetrafunctional acrylate, is presented for the first time for a visible light stereolithography (SL), showing the advantages of both cationic and free-radical resins. An onium salt, commonly used as a cationic UV initiator, and a photosensitizer make the blend suitable for a near-visible (405 nm) SL. An increase in the polymerization rate and a drop in the induction period are observed for the newly prepared cationic/free-radical blend, compared with either only cationic systems or free-radical resins. This suggests that the combination of cationic and free-radical polymerizations in a single resin has a positive synergistic effect. The addition of silica nanoparticles to the blend provides a reinforcing and toughening effect. Indeed, the resin loaded with silica shows a 31% increase in the elastic modulus, compared with the unfilled resin. Regarding the values of tensile strength and elongation at break, they, respectively, grow by 47 and 15%, when the nanocomposite resin is compared with the neat resin. A very low volumetric shrinkage of 0.7% and a remarkable printing quality of objects obtained with this new photopolymer will enable the 3D printing of microrobots, bioengineering microdevices, and sensors. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48333.  相似文献   
53.
A novel rheometer to study the behavior of granular materials in an aerated bed of particles has been developed. The device, called the aerated bed virtual Couette rheometer, is shown to be able to measure the shear stresses in the quasi-static and in the intermediate flow regimes. To validate the instrument, a Newtonian fluid of known viscosity was first sheared. The device was then used for measuring the shear stress of nonaerated glass beads with three -3D printed cells of different sizes to validate the optimal radial position, r*, where both shear rate and shear stress are independent of the cell radius. The results for the nonaerated glass beads displayed Coulomb behavior. The same behavior was observed when the bed was aerated. These experiments also showed that for a fixed shear rate the shear stress decreases as the aeration velocity, U. increases.  相似文献   
54.
Tumor microenvironments are often characterized by an increase in oxidative stress levels. We studied the response to oxidative stimulation in human primary (IGR39) or metastatic (IGR37) cell lines obtained from the same patient, performing patch-clamp recordings, intracellular calcium ([Ca2+]i) imaging, and RT-qPCR gene expression analysis. In IGR39 cells, chloramine-T (Chl-T) activated large K+ currents (KROS) that were partially sensitive to tetraethylammonium (TEA). A large fraction of KROS was inhibited by paxilline—a specific inhibitor of large-conductance Ca2+-activated BK channels. The TEA-insensitive component was inhibited by senicapoc—a specific inhibitor of the Ca2+-activated KCa3.1 channel. Both BK and KCa3.1 activation were mediated by an increase in [Ca2+]i induced by Chl-T. Both KROS and [Ca2+]i increase were inhibited by ACA and clotrimazole—two different inhibitors of the calcium-permeable TRPM2 channel. Surprisingly, IGR37 cells did not exhibit current increase upon the application of Chl-T. Expression analysis confirmed that the genes encoding BK, KCa3.1, and TRPM2 are much more expressed in IGR39 than in IGR37. The potassium currents and [Ca2+]i increase observed in response to the oxidizing agent strongly suggest that these three molecular entities play a major role in the progression of melanoma. Pharmacological targeting of either of these ion channels could be a new strategy to reduce the metastatic potential of melanoma cells, and could complement classical radio- or chemotherapeutic treatments.  相似文献   
55.
Myocardial infarction (MI) is one of the leading causes of heart-related deaths worldwide. Following MI, the hypoxic microenvironment triggers apoptosis, disrupts the extracellular matrix and forms a non-functional scar that leads towards adverse left ventricular (LV) remodelling. If left untreated this eventually leads to heart failure. Besides extensive advancement in medical therapy, complete functional recovery is never accomplished, as the heart possesses limited regenerative ability. In recent decades, the focus has shifted towards tissue engineering and regenerative strategies that provide an attractive option to improve cardiac regeneration, limit adverse LV remodelling and restore function in an infarcted heart. Acellular scaffolds possess attractive features that have made them a promising therapeutic candidate. Their application in infarcted areas has been shown to improve LV remodelling and enhance functional recovery in post-MI hearts. This review will summarise the updates on acellular scaffolds developed and tested in pre-clinical and clinical scenarios in the past five years with a focus on their ability to overcome damage caused by MI. It will also describe how acellular scaffolds alone or in combination with biomolecules have been employed for MI treatment. A better understanding of acellular scaffolds potentialities may guide the development of customised and optimised therapeutic strategies for MI treatment.  相似文献   
56.
57.
Summary: A customized instrument has been developed as part of multidisciplinary research work relating to the development of a biodegradable vascular scaffold. This instrument aims to measure the mechanical properties of elastic and viscoelastic thin membranes with tissue engineering applications. Uniform and omni‐directional pressure is applied on the whole membrane which is uniformly clamped and submerged into a liquid medium. The mechanical testing described in this study is focused on the stress‐strain curves of polycaprolactone (PCL) films after different treatments. The influence of Dulbecco's modified Eagle's culture medium, L929 fibroblast culture, NaOH treatment and film thickness on the mechanical properties of PCL films was evaluated after different times. These studies show that the PCL degradation process is influenced by immersion in the culture medium, inducing an increment in the slope of the pressure‐dilation curve which is indicative of an increase in the polymer stiffness. On the other hand, long NaOH treatments make PCL films have more flexible behavior.

A computerized version of the instrument: (1) Electrical compressor; (2) Filter; (3) Voltage‐pressure converter; (5) Pressure sensor; (6) Differential pressure sensor; (7–8) Main and auxiliary pipettes; (9) Printed circuit board; (10) Personal computer.  相似文献   

58.
Our recent research efforts identified racemic RC‐33 as a potent and metabolically stable σ1 receptor agonist. Herein we describe the isolation of pure RC‐33 enantiomers by chiral chromatography, assignment of their absolute configuration, and in vitro biological studies in order to address the role of chirality in the biological activity of these compounds and their metabolic processing. The binding of enantiopure RC‐33 to the σ1 receptor was also investigated in silico by molecular dynamics simulations. Both RC‐33 enantiomers showed similar affinities for the σ1 receptor and appeared to be almost equally effective as σ1 receptor agonists. However, the R‐configured enantiomer showed higher in vitro hepatic metabolic stability in the presence of NADPH than the S enantiomer. Overall, the results presented herein led us to select (R)‐RC‐33 as the optimal candidate for further in vivo studies in an animal model of amyotrophic lateral sclerosis.  相似文献   
59.
60.
Enzymes, once considered static molecular machines acting in defined spatial patterns and sites of action, move to different intra- and extracellular locations, changing their function. This topological regulation revealed a close cross-talk between proteases and signaling events involving post-translational modifications, membrane tyrosine kinase receptors and G-protein coupled receptors, motor proteins shuttling cargos in intracellular vesicles, and small-molecule messengers. Here, we highlight recent advances in our knowledge of regulation and function of A Disintegrin And Metalloproteinase (ADAM) endopeptidases at specific subcellular sites, or in multimolecular complexes, with a special focus on ADAM10, and tumor necrosis factor-α convertase (TACE/ADAM17), since these two enzymes belong to the same family, share selected substrates and bioactivity. We will discuss some examples of ADAM10 activity modulated by changing partners and subcellular compartmentalization, with the underlying hypothesis that restraining protease activity by spatial segregation is a complex and powerful regulatory tool.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号