首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   997篇
  免费   58篇
  国内免费   7篇
电工技术   12篇
综合类   1篇
化学工业   265篇
金属工艺   27篇
机械仪表   26篇
建筑科学   17篇
矿业工程   2篇
能源动力   79篇
轻工业   52篇
水利工程   1篇
石油天然气   1篇
无线电   96篇
一般工业技术   221篇
冶金工业   40篇
原子能技术   4篇
自动化技术   218篇
  2024年   9篇
  2023年   48篇
  2022年   58篇
  2021年   79篇
  2020年   53篇
  2019年   53篇
  2018年   75篇
  2017年   56篇
  2016年   50篇
  2015年   28篇
  2014年   47篇
  2013年   77篇
  2012年   53篇
  2011年   63篇
  2010年   54篇
  2009年   49篇
  2008年   40篇
  2007年   39篇
  2006年   34篇
  2005年   21篇
  2004年   14篇
  2003年   12篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1984年   2篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
排序方式: 共有1062条查询结果,搜索用时 15 毫秒
101.
Microalgae are promising biomass species owing to their fast growth rate and high CO2 fixation ability as compared to terrestrial plants. Microalgae have long been recognized as potentially good source for biofuel production because of their high oil content and rapid biomass production. In this study Chlorella sp. MP-1 biomass was examined for its physical and chemical characteristics using Bomb calorimeter, TGDTA, CHN and FTIR. The proximate composition was calculated using standard ASTM methodology. Chlorella sp. MP-1 biomass shows low ash (5.93%), whereas high energy (18.59 MJ/kg), carbohydrate (19.46%), and lipid (28.82%) content. The algal de-oiled cake was characterized by FTIR spectroscopy and thermogravimetric study at 10 °C/min and 30 °C/min to investigate its feasibility for thermo-chemical conversion. The present investigation suggests that within the realm of biomass energy technologies the algal biomass can be used as feedstock for bio and thermo-chemical whereas the de-oiled cake for thermo-chemical conversion thereby serving the demand of second generation biofuels.  相似文献   
102.
In the last several years, genetic algorithm (GA) has gained wide acceptance as a robust optimization algorithm in almost all areas of science and engineering. Polymer science and engineering is no exception. Researchers in this field have devoted considerable attention to the optimization of polymer productionusing objective functions and constraints that lead to products having desired material properties. Multiple-objective functions have been optimized simultaneously. An example is the minimization of the reaction time in a reactor (lower costs) while simultaneously minimizing the concentration of side products (that affect the properties of the product adversely). Several end-point constraints (equality or inequality) may also be present, as, e.g., obtaining polymer of a desired molecular weight. Again, this requirement stems from producing polymer having desired strength. Solving such problems usually result in Pareto sets. A variety of adaptations of GA have been developed to obtain optimal solutions for such complex problems. These adaptations can be used to advantage in other fields too. The applications of GA in areas of polymer science and engineering other than polymerization systems are few and far between, but this field is now maturing, and it is hoped that the future will see several newer applications.  相似文献   
103.
1. Introduction The requirement of minimal bottom coverageand thick sidewall coverage for PVD-based films forlow via resistance and improved stress migration isnot easy to achieve with traditional depositionmethods. Modern I-PVD techniques give high bot-tom coverage, due to the ionized component of thedeposition flux. Sidewall coverage tends to be low,which is mainly due to off-normal deposition fluxand a less than unity sticking coefficient.  相似文献   
104.
Much of the work in modeling and computer simulation of spinodal decomposition has been done for binary systems. This work attempts to carry out the analysis of spinodal decomposition in ternary polymer‐solvent‐nonsolvent systems, where the solvent is the monomer used to produce the polymer and the nonsolvent is the major component. Various experimental methods are used to determine values of the parameters of the ternary version of the Cahn‐Hilliard equation of spinodal decomposition, such as cloudpoint experiments, time‐resolved light scattering in the ternary system, and morphological development of polymer membranes formed during the early stages spinodal decomposition. The combination of these experimental methods and computer simulation work shows the validity of the assumptions made in characterizing spinodal decomposition in ternary polymer systems of interest.  相似文献   
105.
In the light of the finding that carbon nanotubes get functionalized on reaction with acid and other oxidizing agents, the structures and shapes of nanotube derivatives resulting from possible reaction between functionalized nanotubes, are obtained by an energy minimization procedure and the structures, so obtained, are compared with the observed microscopic images. The shapes of fullerene -like and nanotupe - like structures containing seven - membered rings, in addition to six and five - membered rings, are depicted along with the structures of bent nanotubes containing similar ring systems. Diamond - graphite hybrid structures which constitute an important class of carbon materials are also investigated.  相似文献   
106.
107.
Micron- to nanometer-sized ultrasound agents, like encapsulated microbubbles and echogenic liposomes, are being developed for diagnostic imaging and ultrasound mediated drug/gene delivery. This review provides an overview of the current state of the art of the mathematical models of the acoustic behavior of ultrasound contrast microbubbles. We also present a review of the in vitro experimental characterization of the acoustic properties of microbubble based contrast agents undertaken in our laboratory. The hierarchical two-pronged approach of modeling contrast agents we developed is demonstrated for a lipid coated (Sonazoid $^\mathrm{TM})$ and a polymer shelled (poly D-L-lactic acid) contrast microbubbles. The acoustic and drug release properties of the newly developed echogenic liposomes are discussed for their use as simultaneous imaging and drug/gene delivery agents. Although echogenicity is conclusively demonstrated in experiments, its physical mechanisms remain uncertain. Addressing questions raised here will accelerate further development and eventual clinical approval of these novel technologies.  相似文献   
108.
Context: Nanosuspensions (NSs) of poorly water-soluble drugs are known to increase the oral bioavailability.

Objectives: The purpose of this study was to develop NS of efavirenz (EFV) and to investigate its potential in enhancing the oral bioavailability of EFV.

Materials and methods: EFV NS was prepared using the media milling technique. The Box–Behnken design was used for optimization of the factors affecting EFV NS. Sodium lauryl sulfate and PVP K30 were used to stabilize the NS. Freeze-dried NS was completely re-dispersed with double-distilled filtered water.

Results: Mean particle size and zeta potential of the optimized NS were found to be 320.4?±?3.62?nm and –32.8?±?0.4 mV, respectively. X-ray diffraction and differential scanning calorimetric analysis indicated no phase transitions. Rate and extent of drug dissolution in the dissolution medium for NS was significantly higher compared to marketed formulation. The parallel artificial membrane permeability assay revealed that NS successfully enhanced the permeation of EFV. Results of in situ absorption studies showed a significant difference in absorption parameters such as Ka, t1/2 and uptake percentages between lyophilized NS and marketed formulation of EFV. Oral bioavailability of EFV in rabbits resulting from NS was increased by 2.19-fold compared to the marketed formulation.

Conclusion: Thus, it can be concluded that NS formulation of EFV can provide improved oral bioavailability due to enhanced solubility, dissolution velocity, permeability and hence absorption.  相似文献   
109.
110.
Oxidative conversion of propane to propylene and ethylene over a V2O5/CeO2/SA5205 (V:Ce=1:1) catalyst, with or without steam and limited O2, has been studied at different temperatures (700–850 °C), C3H8/O2 ratio (4.0), H2O/C3H8 ratio (0.5) and space velocity (3000 cm3 g−1 h−1). The propane conversion, selectivity for propylene and net heat of reaction (ΔHr) are strongly influenced by the reaction temperature and presence of steam in the reactant feed. In the presence of steam and limited O2, the process involves a coupling of endothermic thermal cracking and exothermic oxidative conversion reactions of propane which occur simultaneously. Because of the coupling of exothermic and endothermic reactions, the process operates in an energy-efficient and safe manner. The net heat of reaction can be controlled by the reaction temperature and concentration of O2. The process exothermicity is found to be reduced drastically with increasing temperature. Due to the addition of steam in the feed, no coke formation was observed in the process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号