首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   31篇
  国内免费   3篇
电工技术   1篇
化学工业   161篇
金属工艺   31篇
机械仪表   22篇
建筑科学   4篇
能源动力   20篇
轻工业   39篇
水利工程   1篇
无线电   33篇
一般工业技术   169篇
冶金工业   25篇
原子能技术   3篇
自动化技术   41篇
  2023年   13篇
  2022年   27篇
  2021年   31篇
  2020年   13篇
  2019年   15篇
  2018年   23篇
  2017年   30篇
  2016年   21篇
  2015年   20篇
  2014年   22篇
  2013年   53篇
  2012年   23篇
  2011年   43篇
  2010年   24篇
  2009年   13篇
  2008年   17篇
  2007年   23篇
  2006年   18篇
  2005年   8篇
  2004年   7篇
  2003年   19篇
  2002年   7篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1998年   11篇
  1997年   10篇
  1996年   6篇
  1995年   3篇
  1994年   8篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1987年   4篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有550条查询结果,搜索用时 46 毫秒
11.
Foley catheters are inevitable in health care unit. Pathogens colonise and form biofilm on catheter causing catheter‐associated urinary tract infection. Therefore, the authors aimed to functionalise catheter to resist biofilm formation. The authors impregnated urinary catheters with a synergistic combination of antibiotics and silver nanoparticles (SNPs) to evaluate antibiofilm efficacy in vitro and in vivo. SNPs were synthesised using Spirulina platensis. Synergy between the SNPs and antibiotics was determined by the checker‐board method. In vivo efficacy of the functionalised catheters was assessed in mice. Liver and kidney function tests of mice were performed. The in vitro anti‐adherence activity of the functionalised catheters was evaluated after 2 years. Nanoparticle sizes were 42–75 nm. Synergistic activity was observed among SNPs (2 µg/ml), amikacin (6.25 µg/ml), and nitrofurantoin (31.25 µg/ml). In mice, catheters functionalised with combinations of antibiotics and SNPs exhibited no colonisation until Day 14. Blood, liver, and kidney tests were normal. After 2 years, catheters functionalised with antibiotics exhibited 25% inhibition of bacterial adhesion, and catheters functionalised with the nanoparticle‐antibiotic combination exhibited 90% inhibition. Impregnation of urinary catheters with a synergistic combination of antibiotics and SNPs is an efficient and promising method for preventing biofilm formation.Inspec keywords: catheters, drugs, silver, nanoparticles, nanomedicine, liver, kidney, blood, microorganisms, adhesion, biomechanics, cellular biophysicsOther keywords: Foley catheters, synergistic nanoparticle‐antibiotics combination, silver nanoparticles, biofilm formation resitance, health care unit, pathogens, urinary tract infection, SNP, Spirulina platensis, checker‐board method, liver function, kidney function, vitro antiadherence activity, amikacin, nitrofurantoin, blood, bacterial adhesion, size 42 nm to 75 nm, Ag  相似文献   
12.
This study discusses the use of Co3 O4 impregnated graphene (CoOIG) as an efficient adsorbent for the removal of methyl violet (MV) dye from wastewater. CoOIG nanocomposites have been prepared by pyrolyzing paraffin wax with cobalt acetate. The synthesised nanocomposite was characterised by X‐ray diffraction, field emission scanning electron microscope, transmission electron microscope, Fourier transform infrared spectroscope, Raman spectroscopy, and Brunauer–Emmett–Teller isotherm studies. The above studies indicate that the composites have cobalt oxide nanoparticles of size 51–58 nm embedded in the graphene nanoparticles. The adsorption studies were conducted with various parameters, pH, temperature and initial dye concentration, adsorbent dosage and contact time by the batch method. The adsorption of MV dye by the adsorbent CoOIG was about 90% initially at 15 min and 98% dye removal at pH 5. The data were fitted in Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich and Sips isotherm models. Various thermodynamic parameters like Gibbs free energy, enthalpy, and entropy of the on‐going adsorption process have also been calculated.Inspec keywords: cobalt compounds, graphene, nanoparticles, nanocomposites, nanofabrication, adsorption, dyes, scanning electron microscopy, field emission electron microscopy, transmission electron microscopy, Raman spectra, Fourier transform infrared spectra, free energy, enthalpy, entropyOther keywords: nanocomposite, paraffin wax, adsorption, methyl violet dye, water, X‐ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, Brunauer‐Emmett‐Teller isotherm, cobalt oxide nanoparticles, graphene nanoparticles, thermodynamic parameters, Gibbs free energy, enthalpy, entropy, Co3 O4 ‐C  相似文献   
13.
Continuous improvements in very-large-scale integration (VLSI) technology and design software have significantly broadened the scope of digital signal processing (DSP) applications. The use of application-specific integrated circuits (ASICs) and programmable digital signal processors for many DSP applications have changed, even though new system implementations based on reconfigurable computing are becoming more complex. Adaptable platforms that combine hardware and software programmability efficiency are rapidly maturing with discrete wavelet transformation (DWT) and sophisticated computerized design techniques, which are much needed in today’s modern world. New research and commercial efforts to sustain power optimization, cost savings, and improved runtime effectiveness have been initiated as initial reconfigurable technologies have emerged. Hence, in this paper, it is proposed that the DWT method can be implemented on a field-programmable gate array in a digital architecture (FPGA-DA). We examined the effects of quantization on DWT performance in classification problems to demonstrate its reliability concerning fixed-point math implementations. The Advanced Encryption Standard (AES) algorithm for DWT learning used in this architecture is less responsive to resampling errors than the previously proposed solution in the literature using the artificial neural networks (ANN) method. By reducing hardware area by 57%, the proposed system has a higher throughput rate of 88.72%, reliability analysis of 95.5% compared to the other standard methods.  相似文献   
14.
Recently, a partition-of-unity (PU) based finite element called ‘FE-Meshfree’ QUAD4 element has been published. That element employed polynomial basis functions for the local approximation (LA). In the present paper, a new FE-Meshfree QUAD4 element employing hybrid radial-polynomial basis functions for the LA is proposed. An advantage of radial-polynomial basis is the freedom from the possible singularity of the moment matrix that could sometimes result with an inappropriate choice of polynomial basis functions. Another advantage is the improved accuracy of finite element solution. The new element has been applied to several linear and nonlinear test problems. The results demonstrate that the new element gives much better performance as compared to the previous FE-Meshfree QUAD4 element with pure polynomial basis. Even with a lower order basis, viz., with just three or four polynomial terms, the present element is capable of giving more accurate solution than the previous element which employs a six-term polynomial basis. The new element also exhibits a much higher degree of tolerance to mesh distortion than the known quadratic elements. Moreover, the linear dependence problem, otherwise associated with many of the partition-of-unity (PU) based elements, is completely eliminated from the present element.  相似文献   
15.
Transportation of goods in a supply chain from plants to customers through distribution centers (DCs) is modeled as a two-stage distribution problem in the literature. In this paper we propose genetic algorithms to solve a two-stage transportation problem with two different scenarios. The first scenario considers the per-unit transportation cost and the fixed cost associated with a route, coupled with unlimited capacity at every DC. The second scenario considers the opening cost of a distribution center, per-unit transportation cost from a given plant to a given DC and the per-unit transportation cost from the DC to a customer. Subsequently, an attempt is made to represent the two-stage fixed-charge transportation problem (Scenario-1) as a single-stage fixed-charge transportation problem and solve the resulting problem using our genetic algorithm. Many benchmark problem instances are solved using the proposed genetic algorithms and performances of these algorithms are compared with the respective best existing algorithms for the two scenarios. The results from computational experiments show that the proposed algorithms yield better solutions than the respective best existing algorithms for the two scenarios under consideration.  相似文献   
16.
A meshless approach based on the reproducing kernel particle method is developed for the flexural, free vibration and buckling analysis of laminated composite plates. In this approach, the first-order shear deformation theory (FSDT) is employed and the displacement shape functions are constructed using the reproducing kernel approximation satisfying the consistency conditions. The essential boundary conditions are enforced by a singular kernel method. Numerical examples involving various boundary conditions are solved to demonstrate the validity of the proposed method. Comparison of results with the exact and other known solutions in the literature suggests that the meshless approach yields an effective solution method for laminated composite plates.  相似文献   
17.
The last decade has witnessed an unprecedented growth in availability of data having spatio-temporal characteristics. Given the scale and richness of such data, finding spatio-temporal patterns that demonstrate significantly different behavior from their neighbors could be of interest for various application scenarios such as—weather modeling, analyzing spread of disease outbreaks, monitoring traffic congestions, and so on. In this paper, we propose an automated approach of exploring and discovering such anomalous patterns irrespective of the underlying domain from which the data is recovered. Our approach differs significantly from traditional methods of spatial outlier detection, and employs two phases—(i) discovering homogeneous regions, and (ii) evaluating these regions as anomalies based on their statistical difference from a generalized neighborhood. We evaluate the quality of our approach and distinguish it from existing techniques via an extensive experimental evaluation.  相似文献   
18.
Nano-Micro Letters - Magnesia (MgO) nanoparticles were produced from magnesite ore (MgCO3) using ball mill. The crystalline size, morphology and specific SSA were characterized by X-ray diffraction...  相似文献   
19.
Titanium alloy (Ti–6Al–7Nb) used for orthopaedic applications was nitrided using a conventional dc plasmatechnique. Load-dependent microhardness measurements exhibit a hardness of 2087 Hv at 25 g load for the alloy nitrided at 900 8C for 8 h. Cyclic polarization measurement in Hanks solution show maximum corrosion rate and minimum areaof repassivation for the alloy nitrided for 8 h at 900 8C. Electrochemical impedance measurements show an increase in charge transfer resistance and decrease in double layer capacitance when compared to untreated alloy.  相似文献   
20.
Hydroxyapatite (HAP) is the naturally occurring mineral form of calcium apatite and the most studied material as a bone substituent. Considering HAP's inherent properties, this study explored changes in HAP's characteristics from doping with other metals such as Fe. To form pure HAP and Fe-HAP with different amounts of Fe, we used the hydrothermal approach, and the composites that formed were thoroughly analyzed for their crystallinity, surface bonding, morphology, magnetic behavior, mechanical strength, biocompatibility, hemocompatibility, and in vitro cytotoxicity. The powder XRD studies confirmed the samples' crystallinity, and the lowest crystalline size was 19.7 nm in 10Fe-HAP. The FTIR analysis confirmed the formation of HAP by the hydroxyl, phosphate, and carbonate groups. The FESEM demonstrated that the morphology of the pure HAP was rod-shaped, which transformed into spheres after Fe doping. The EDS analysis confirmed the successful formation of HAP and Fe-HAP composites. The magnetic studies indicated the diamagnetic behavior of the pure HAP, while the Fe-doped HAPs had a superparamagnetic nature with saturation magnetizations (Ms) of 2Fe-HAP, 4Fe-HAP, and 10Fe-HAP at 0.0062, 0.0092, and 0.029 emu/g respectively. Assessment of the mechanical properties, biocompatibility, hemocompatibility, and cytotoxicity indicated that the Fe-doped HAPs were superior to the pure HAP, and among the Fe-HAPs, the 10Fe-HAP) had the highest amount of Fe and the best characteristics. The studies also indicated that Ca2+ interactions influenced the cells via HAP doping with that of Fe, equally increasing the physicochemical and biological properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号