首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   323篇
  免费   16篇
电工技术   1篇
化学工业   88篇
金属工艺   3篇
机械仪表   4篇
建筑科学   9篇
能源动力   22篇
轻工业   16篇
水利工程   1篇
石油天然气   1篇
无线电   31篇
一般工业技术   55篇
冶金工业   23篇
原子能技术   1篇
自动化技术   84篇
  2023年   2篇
  2022年   12篇
  2021年   11篇
  2020年   11篇
  2019年   7篇
  2018年   10篇
  2017年   8篇
  2016年   15篇
  2015年   12篇
  2014年   16篇
  2013年   24篇
  2012年   8篇
  2011年   21篇
  2010年   15篇
  2009年   13篇
  2008年   23篇
  2007年   10篇
  2006年   11篇
  2005年   6篇
  2004年   8篇
  2003年   4篇
  2002年   11篇
  2001年   9篇
  2000年   11篇
  1999年   3篇
  1998年   13篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
  1966年   2篇
排序方式: 共有339条查询结果,搜索用时 0 毫秒
11.
Static output-feedback stabilizing controllers for nonlinear systems represented by discrete-time Takagi--Sugeno fuzzy models are studied. The main result concerns the stabilization based on the parallel distributed compensation (PDC) approach. Sufficient conditions are provided for quadratic and nonquadratic stability. To design static output-feedback stabilizing controllers, a numerical procedure based on the cone complementarity algorithm is given. It is shown that the relaxed conditions proposed in the nonquadratic case outperform those for the quadratic case. Two numerical examples are given to illustrate the efficiency of the proposed approach.   相似文献   
12.
Any factorization/back substitution scheme for the solution of linear systems consists of two phases which are different in nature, and hence may be inefficient for parallel implementation on a single computational network. The Gauss-Jordan elimination scheme unifies the nature of the two phases of the solution process and thus seems to be more suitable for parallel architectures, especially if reconfiguration of the communication pattern is not permitted. In this communication, a computational network for the Gauss-Jordan algorithm is presented. This network compares favorably with optimal implementations of the Gauss elimination/back substitution algorithm.  相似文献   
13.
Low-Reynolds-number flows in cavities, characterized by separating and recirculating flows are increasingly used in microfluidic applications such as mixing and sorting of fluids, cells, or particles. However, there is still a lack of guidelines available for selecting the appropriate or optimized microcavity configuration according to the specific task at hand. In an effort to provide accurate design guidelines, we investigate quantitatively low-Reynolds-number cavity flow phenomena using a microfluidic screening platform featuring rectangular channels lined with cylindrical cavities. Using particle image velocimetry (PIV), supported by computational fluid dynamics (CFD) simulations, we map the entire spectrum of flows that exist in microcavities over a wide range of low-Reynolds numbers (Re = 0.1, 1, and 10) and dimensionless geometric parameters. Comprehensive phase diagrams of the corresponding microcavity flow regimes are summarized, capturing the gradual transition from attached flow to a single vortex and crossing through two- and three-vortex recirculating systems featuring saddle-points. Finally, we provide design insights into maximizing the rotational frequencies of recirculating single-vortex microcavity systems. Overall, our results provide a complete and quantitative framework for selecting cavities in microfluidic-based microcentrifuges and vortex mixers.  相似文献   
14.
Automatic segmentation of multiple sclerosis (MS) lesions in brain MRI has been widely investigated in recent years with the goal of helping MS diagnosis and patient follow-up. However, the performance of most of the algorithms still falls far below expert expectations. In this paper, we review the main approaches to automated MS lesion segmentation. The main features of the segmentation algorithms are analysed and the most recent important techniques are classified into different strategies according to their main principle, pointing out their strengths and weaknesses and suggesting new research directions. A qualitative and quantitative comparison of the results of the approaches analysed is also presented. Finally, possible future approaches to MS lesion segmentation are discussed.  相似文献   
15.
We present in this paper an experimental study of a commercial diffusion-absorption refrigeration machine (DAR) operating on the Platen and Munters cycle. The temperatures at the inlet and outlet of every component of the machine, as well as the cabinet and ambient temperature are measured continuously. The tests are repeated for various electric power inputs to the refrigerator. The global heat transfer coefficient of the cabinet (UA)cab is determined using both theoretical and experimental methods. This coefficient is found equal to 0.2 W/°C. The global heat transfer coefficient of the evaporator (UA)evap is deduced using dynamic and steady state methods. This global heat transfer coefficient (UA)evap is found equal to 0.3 W/°C. Finally the cooling capacity of the unit and the coefficient of performance are evaluated. The heating power supply to the generator necessary to ensure the desired state of this machine is found to be in the range of 35 W–45 W.  相似文献   
16.
Hybrid organic–inorganic materials made from sol–gel precursors can be used as anticorrosion barriers on metal substrates. The modification of epoxy resins with silicones is an interesting approach toward the synthesis of hybrid materials that combine the advantages offered by epoxy resins with those of silicones. In this study, novel hybrid epoxy‐silicon materials were synthesized using sol–gel chemistry and subsequently functionalized with 4,4′‐methylenebis(phenyl isocyanate), incorporating urethane functionality into the final polymer. The study screened five different epoxide precursors for use in the synthesis of the new hybrid materials and optimizing their anticorrosion properties. Spectral characterization confirms the proposed chemical structures of the newly synthesized polymers. The newly developed polymers were painted on mild steel panels, thermally cured, and their thermal, surface morphological, adhesion, and anticorrosion properties were fully characterized. The new coatings were found to have excellent thermal stability and adherence properties to steel surface. The results of corrosion testing on coated steel panels following long‐term immersion in a 3.5 wt % aqueous NaCl medium revealed that the polymer prepared using the epoxide precursor bisphenol A diglycidyl ether provided the best anticorrosion protection property among the synthesized polymers. This could be attributed to the excellent integrity and crosslink density properties in addition to the lack of microdefects in the surface of this coated sample as confirmed by scanning electron microscopy analyses. The newly prepared hybrid coatings reported in this study are very promising as an alternative to toxic chromate‐based coatings. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43947.  相似文献   
17.
We compare the performance of two back reflector designs on the optoelectrical properties of microcrystalline silicon solar cells. The first one consists of a 5‐µm‐thick low‐pressure chemical vapor deposition (LPCVD)‐ZnO electrode combined with a white sheet; the second one incorporates an Ag reflector deposited on a thin LPCVD‐ZnO layer (with thickness below 200 nm). For this latter design, the optical loss in the nano‐rough Ag reflector can be strongly reduced by smoothing the surface of the thin underlying ZnO layer, by means of an Ar‐plasma treatment. Because of its superior lateral conductivity, the thin‐ZnO/Ag back reflector design provides a higher fill factor than the dielectric back reflector design. When decreasing the roughness of the front electrode with respect to our standard front LPCVD‐ZnO layer, the electrical cell performance is improved; in addition, the implementation of the thin‐ZnO/Ag back reflector leads to a significant relative gain in light trapping. Applying this newly optimized combination of front and back electrodes, the conversion efficiency is improved from 8.9% up to 9.4%, for cells with an active‐layer thickness of only 1.1 µm. We thereby highlight the necessity to optimize simultaneously the front and back electrodes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
18.
Proenkephalin (PENK) and prodynorphin (PDYN) are endogenous opioid peptides mainly produced in the striatum and, to a lesser extent, in the cerebral cortex. Dysregulated metabolism and altered cerebrospinal fluid (CSF) levels of PENK and PDYN have been described in several neurodegenerative diseases. However, no study to date investigated these peptides in the CSF of sporadic Creutzfeldt–Jakob disease (sCJD). Using liquid chromatography-multiple reaction monitoring mass spectrometry, we evaluated the CSF PDYN- and PENK-derived peptide levels in 25 controls and 63 patients with sCJD belonging to the most prevalent molecular subtypes (MM(V)1, VV2 and MV2K). One of the PENK-derived peptides was significantly decreased in each sCJD subtype compared to the controls without a difference among subtypes. Conversely, PDYN-derived peptides were selectively decreased in the CSF of sCJD MV2K, a subtype with a more widespread overall pathology compared to the sCJD MM(V)1 and the VV2 subtypes, which we confirmed by semiquantitative analysis of cortical and striatal neuronal loss and astrocytosis. In sCJD CSF PENK and PDYN were associated with CSF biomarkers of neurodegeneration but not with clinical variables and showed a poor diagnostic performance. CSF PDYN and PENK-derived peptides had no significant diagnostic and prognostic values in sCJD; however, the distinct marker levels between molecular subtypes might help to better understand the basis of phenotypic heterogeneity determined by divergent neuronal targeting.  相似文献   
19.
Optimisation methods under varied criteria for different parameters in stochastic reliability systems are being increasingly developed and have been reported in recent literature. The large interest evinced in this fascinating area is primarily due to its applicational value and operational role in the decision making process. Recently a parallel system has been considered and the optimal number of units discussed, as well as optimal replacement times for the system based on acquisition and replacement costs.In this paper we consider an improved version of the model formulation, by bringing in additionally the maintenance and per unit repair time costs, and develop a procedure to obtain the optimal number of components in the system with the condition that the system is allowed to undergo a prefixed maximum number of repairs, after which the system is to be replaced.The applicational use of the results is illustrated through numerical work, specialising to some known laws governing the system parameters and corresponding to different fixed number of repair sanctions.  相似文献   
20.
Dynamic cylindrical cavitation fields are studied for a family of plastic orthotropic solids with arbitrary strain hardening response. Analysis is within the framework of plane-strain, steady state flow theory of associated plasticity. New formulae for cavitation pressure are validated against accurate numerical analysis and contact is made with existing studies. A uniform procedure is presented for estimating penetration depth of rigid axisymmetric projectiles at normal impact. Comparison with available experimental data reveals a very good agreement for both spherical and cylindrical dynamic cavitation models. Quasi-static cavitation pressure formulae can predict penetration depth with an appropriate scaling of the yield stress. The scaling factors appear to be independent of material properties but reflect the shape of head profile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号