首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1853篇
  免费   79篇
  国内免费   15篇
电工技术   43篇
综合类   7篇
化学工业   419篇
金属工艺   38篇
机械仪表   58篇
建筑科学   73篇
矿业工程   6篇
能源动力   150篇
轻工业   177篇
水利工程   14篇
石油天然气   23篇
无线电   219篇
一般工业技术   301篇
冶金工业   105篇
原子能技术   14篇
自动化技术   300篇
  2024年   9篇
  2023年   44篇
  2022年   84篇
  2021年   100篇
  2020年   82篇
  2019年   83篇
  2018年   100篇
  2017年   101篇
  2016年   88篇
  2015年   48篇
  2014年   92篇
  2013年   171篇
  2012年   118篇
  2011年   134篇
  2010年   94篇
  2009年   98篇
  2008年   75篇
  2007年   61篇
  2006年   33篇
  2005年   23篇
  2004年   22篇
  2003年   23篇
  2002年   22篇
  2001年   23篇
  2000年   16篇
  1999年   17篇
  1998年   22篇
  1997年   23篇
  1996年   20篇
  1995年   20篇
  1994年   16篇
  1993年   4篇
  1992年   10篇
  1991年   4篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   5篇
  1985年   10篇
  1984年   6篇
  1983年   9篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1970年   1篇
排序方式: 共有1947条查询结果,搜索用时 15 毫秒
91.
In this investigation, magnetic γ-Al2O3 nanocomposite polymer particles with epoxide functionality were prepared following a multistep process. The prepared nanocomposite polymer particle was named as γ-Al2O3/Fe3O4/SiO2/poly(glycidyl methacrylate (PGMA). The surface property was evaluated by carrying out the adsorption study of Remazol Navy RGB (RN), a model reactive azo dye, on both γ-Al2O3/Fe3O4/SiO2 and γ-Al2O3/Fe3O4/SiO2/PGMA nanocomposite particles, that is, before and after epoxide functionalization. A contact time, temperature, adsorbent dose, and dye concentration dependent change in adsorption behavior was observed on both nanocomposite particles. The adsorption amount reached equilibrium (qe) value within 5 minutes at the respective point of zero charge (PZC). The adsorption density of RN per unit specific surface area on epoxide functional γ-Al2O3/Fe3O4/SiO2/PGMA nanocomposite polymer particles (1.30 mg/m2) was higher relative to that on γ-Al2O3/Fe3O4/SiO2 nanocomposite particles (0.87 mg/m2). The optimum adsorbent dose for obtaining the maximum adsorption density was 0.01 g. Comparatively, Langmuir isotherm model was better to describe the adsorption process and the adsorption process was favorable at low temperature (283 K). Batch kinetic adsorption experiment suggested that a pseudo-second-order rate kinetic model is more appropriate. Nanocomposite polymer particles were used as adsorbent up to third cycle with almost 99% adsorption efficiency.  相似文献   
92.
Natural fiber reinforced composites is an emerging area in polymer science. These natural fibers are low cost fibers with low density and high specific properties. These are biodegradable and nonabrasive. The natural fiber composites offer specific properties comparable to those of conventional fiber composites. However, in development of these composites, the incompatibility of the fibers and poor resistance to moisture often reduce the potential of natural fibers, and these draw backs become critical issue. Wood‐plastic composites (WPC) are a relatively new class of materials and one of the fastest growing sectors in the wood composites industry. Composites of wood in a thermoplastic matrix (wood–plastic composites) are considered a low maintenance solution to using wood in outdoor applications. WPCs are normally made from a mixture of wood fiber, thermoplastic, and small amounts of process and property modifiers through an extrusion process. In this study, Wood–plastic composites (WPC) are produce by adding a maleic anhydride modified low density polyethylene coupling agent to improve interfacial adhesion between the wood fiber and the plastic. Mixing is done with twin screw extruder. Subsequently, tensile strength, the modulus of elasticity, % elongation, hardness, Izod impact strength, melt flow index (MFI), and heat deflection temperature (HDT) are determined. Thermal transition temperatures and microstructure are determined with DSC and SEM, respectively. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
93.
94.
Heavy metal toxicity is one of the most devastating abiotic stresses. Heavy metals cause serious damage to plant growth and productivity, which is a major problem for sustainable agriculture. It adversely affects plant molecular physiology and biochemistry by generating osmotic stress, ionic imbalance, oxidative stress, membrane disorganization, cellular toxicity, and metabolic homeostasis. To improve and stimulate plant tolerance to heavy metal stress, the application of biostimulants can be an effective approach without threatening the ecosystem. Melatonin (N-acetyl-5-methoxytryptamine), a biostimulator, plant growth regulator, and antioxidant, promotes plant tolerance to heavy metal stress by improving redox and nutrient homeostasis, osmotic balance, and primary and secondary metabolism. It is important to perceive the complete and detailed regulatory mechanisms of exogenous and endogenous melatonin-mediated heavy metal-toxicity mitigation in plants to identify potential research gaps that should be addressed in the future. This review provides a novel insight to understand the multifunctional role of melatonin in reducing heavy metal stress and the underlying molecular mechanisms.  相似文献   
95.
This paper reports on the synthesis of the nanoenergetic composites containing CuO nanorods and nanowires, and Al‐nanoparticles. Nanorods and nanowires were synthesized using poly(ethylene glycol) templating method and combined with Al‐nanoparticles using ultrasonic mixing and self‐assembly methods. Poly(4‐vinylpyridine) was used for the self‐assembly of Al‐nanoparticles around the nanorods. At the optimized values of equivalence ratio, sonication time, and Al‐particle size, the combustion wave speed of 1650 m s−1 was obtained for the nanorods‐based energetics. For the composite of nanowires and Al‐nanoparticles the speed was increased to 1900 m s−1. The maximum combustion wave speed of 2400 m s−1 was achieved for the self‐assembled composite, which is the highest known so far among the nanoenergetic materials. It is possible that in the self‐assembled composites, the interfacial contact between the oxidizer and fuel is higher and resistance to overall diffusional process is lower, thus enhancing the performance.  相似文献   
96.
97.
Reusing wastewater from oil-related industries is becoming increasingly important, especially in water-stressed oil-producing countries. Before oily wastewater can be discharged or reused, it must be properly treated, e.g., by membrane-based processes like ultrafiltration. A major issue of the applied membranes is their high fouling propensity. This paper reports on mitigating fouling inside ready-to-use ultrafiltration hollow-fiber modules used in a polishing step in oil/water separation. For this purpose, in-situ polyzwitterionic hydrogel coating was applied. The membrane performance was tested with oil nano-emulsions using a mini-plant system. The main factors influencing fouling were systematically investigated using statistical design of experiments.  相似文献   
98.
Poisoning with organophosphorus compounds (OPCs) represents an ongoing threat to civilians and rescue personal. We have previously shown that oximes, when administered prophylactically before exposure to the OPC paraoxon, are able to protect from its toxic effects. In the present study, we have assessed to what degree experimental (K-27; K-48; K-53; K-74; K-75) or established oximes (pralidoxime, obidoxime), when given as pretreatment at an equitoxic dosage of 25% of LD01, are able to reduce mortality induced by the OPC azinphos-methyl. Their efficacy was compared with that of pyridostigmine, the only FDA-approved substance for such prophylaxis. Efficacy was quantified in rats by Cox analysis, calculating the relative risk of death (RR), with RR=1 for the reference group given only azinphos-methyl, but no prophylaxis. All tested compounds significantly (p ≤ 0.05) reduced azinphos-methyl-induced mortality. In addition, the efficacy of all tested experimental and established oximes except K-53 was significantly superior to the FDA-approved compound pyridostigmine. Best protection was observed for the oximes K-48 (RR = 0.20), K-27 (RR = 0.23), and obidoxime (RR = 0.21), which were significantly more efficacious than pralidoxime and pyridostigmine. The second-best group of prophylactic compounds consisted of K-74 (RR = 0.26), K-75 (RR = 0.35) and pralidoxime (RR = 0.37), which were significantly more efficacious than pyridostigmine. Pretreatment with K-53 (RR = 0.37) and pyridostigmine (RR = 0.52) was the least efficacious. Our present data, together with previous results on other OPCs, indicate that the experimental oximes K-27 and K-48 are very promising pretreatment compounds. When penetration into the brain is undesirable, obidoxime is the most efficacious prophylactic agent already approved for clinical use.  相似文献   
99.
The effects of natural disasters, pandemic-induced lockdowns, and other disruptions often cascade across networks. In this work, we use minimum cost of resilience (MCOR) and operation-based resilience metrics to quantify network performance against single-connectivity failures and identify critical connections in interconnected networks. MCOR corresponds to the minimum additional infrastructure investment that is required to achieve a certain level of resilience. To guarantee MCOR, we incorporate the metrics in a multi-scenario mixed-integer linear program (MILP) that accounts for resilience in the design phase of interconnected networks. The goal is to obtain optimal generation and transportation capacities with flexible operation under all single-connectivity disruption scenarios. We demonstrate the applicability of our resilience-aware framework on a water-energy nexus (WEN) example focusing on grass-root design and retrofitting. We further apply the framework to analyze a regional WEN and observe that it is possible to achieve “full” resilience in the expense of additional regional investments.  相似文献   
100.
A waste material called oil fly ash (OFA) was acid-functionalized, yielding f-OFA-COOH, which was then reacted with cerium oxide (CeO2) to make CeO2-functionalized OFA, or f-OFA-CeO2. Pristine OFA and f-OFA-CeO2 were used to make waterborne polyurethane (WBPU) dispersions, referred to as WBPU/OFA and WBPU/f-OFA-CeO2, respectively, with defined OFA and f-OFA-CeO2 content. All the dispersions were applied to mild steel as organic coatings to evaluate their protective properties, such as their hydrophobicity, adhesive strength and UV-shielding resistance. These protective properties varied based on the OFA and f-OFA-CeO2 content. The highest water contact angle, minimum water swelling and maximum adhesive strength were found using WBPU/f-OFA-CeO2-20 coating (using 2.00 wt% f-OFA-CeO2), which also showed the maximum ultraviolet (UV) absorption via UV–vis spectroscopy analysis. This UV shielding result also matched field test results, as that coating was found to exhibit the lowest UV degradation near a marine atmosphere, as shown by X-ray photoelectron spectroscopy (XPS) analysis. The least affected hydrophobicity was also recorded for the sample with the WBPU/f-OFA-CeO2-20 coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号