首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4295篇
  免费   321篇
  国内免费   29篇
电工技术   56篇
综合类   25篇
化学工业   1190篇
金属工艺   139篇
机械仪表   219篇
建筑科学   169篇
矿业工程   11篇
能源动力   230篇
轻工业   343篇
水利工程   98篇
石油天然气   73篇
武器工业   3篇
无线电   366篇
一般工业技术   736篇
冶金工业   139篇
原子能技术   33篇
自动化技术   815篇
  2024年   17篇
  2023年   61篇
  2022年   95篇
  2021年   221篇
  2020年   241篇
  2019年   291篇
  2018年   377篇
  2017年   335篇
  2016年   302篇
  2015年   190篇
  2014年   330篇
  2013年   521篇
  2012年   369篇
  2011年   350篇
  2010年   223篇
  2009年   219篇
  2008年   120篇
  2007年   99篇
  2006年   63篇
  2005年   33篇
  2004年   29篇
  2003年   20篇
  2002年   21篇
  2001年   12篇
  2000年   13篇
  1999年   18篇
  1998年   5篇
  1997年   7篇
  1996年   6篇
  1995年   12篇
  1994年   3篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1986年   2篇
  1984年   6篇
  1982年   5篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1967年   1篇
排序方式: 共有4645条查询结果,搜索用时 62 毫秒
991.
Water‐based polymer gels are used widely in the oil and gas industry to viscosify fluids used in the hydraulic fracturing of production wells, where they serve to increase the force applied to the rock and to improve the transport of proppants used to maintain the fracture after formation. After fracturing, the gel must be degraded to a low viscosity with enzymes or gel breakers. Existing systems add the breaker either directly to the gelant or encapsulated in beads that are crushed when the applied pressure is released and the fractures close. In the former case, the gel may be broken prematurely, and this may prevent efficient fracture propagation and proppant transport, whereas in the latter case, the breaker may not be uniformly distributed throughout the gel, with the result that the gel is incompletely broken and the hydraulic conductivity of the well is reduced. To obtain delayed release, combined with the homogeneous distribution of enzyme throughout the gel, polyethylenimine–dextran sulfate polyelectrolyte complexes were used to entrap pectinase. Such particles were originally developed to entrap pharmaceuticals, and we previously demonstrated their ability to delay the release of gel crosslinking agents for oilfield applications. The degradation of both the viscosity and viscoelastic moduli of borate‐crosslinked guar gel by pectinase loaded in polyelectrolyte nanoparticles was delayed by up to 12 h, compared to about 2 h for equivalent systems where the pectinase was not entrapped. The combination of homogeneous mixing and the delayed release of enzymes packaged in polyelectrolyte complex nanoparticles showed promise for improved cleanup after hydraulic fracturing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
992.
In this study, all-green biocomposites based on poly(lactic acid) (PLA)/rice straw (RS) as an agricultural waste were prepared, and the physical, structural, and mechanical properties of these biocomposites were enhanced by alkali-pulping of RS and chemical grafting of PLA onto the lignocellulosic fiber. The reactive compatibilizers of maleic anhydride grafted PLA (PLA-g-MA) were obtained through a reactive extrusion process at different processing conditions. The probable chemical reactions between the functional groups of PLA-g-MA with hydroxyl groups of RS pulp as well as the end groups of PLA chains can effectively improve the interfacial adhesion between the filler and matrix. However, the findings confirm the great importance of PLA-g-MA chemical structure in controlling the biocomposite performance. By choosing proper processing conditions for preparing PLA-g-MA and incorporating this compatibilizer into the PLA/treated RS biocomposite, Young modulus, tensile strength, impact strength, and tensile toughness of the PLA/RS biocomposite increased by 101%, 156%, 96%, and 327%, respectively.  相似文献   
993.
This study aims to simulate the process of enhanced oil recovery (EOR) during gas injection along with nanoparticles and investigate the affecting parameters in a conventional carbonate oil reservoir. Ansys Fluent software with a suitable multiphase model was used to simulate natural gas injection with a nanoparticle into a core sample. The simulation model was validated with a laboratory test of natural gas injection. Then, to obtain the optimal values of each of the parameters affecting the process of EOR during the natural gas injection along with nanoparticles, the design of the experiment was carried out with the help of Qualitek-4 software and the Taguchi method. Therefore, three factors, including nanoparticle type (clay, titanium oxide, and silica nanoparticles), nanoparticle diameter (2–50 nm), and the volume fraction of nanoparticles in the base fluid (0.5–5 vol.%), as influential factors on the EOR during natural gas injection along with nanoparticles were chosen. The results of the numerical study indicated that silica nanoparticles significantly affect EOR more than clay and titanium oxide nanoparticles. Moreover, the smaller the diameter of nanoparticles (close to 2 nm) and the more significant the volume fraction of nanoparticles in the base fluid (close to 5 vol.%), the higher the oil recovery factor will be. This phenomenon occurs due to changes in the density and viscosity of the base fluid and, consequently, improves the mobility ratio of the injected fluid. On the other hand, the tiny size of nanoparticles allows them to easily enter the pores of the reservoir rock without entrapping and producing oil from them. Eventually, the highest oil recovery factor (59%) was obtained using silica nanoparticles with a diameter of 2 nm and a volume fraction of 5 vol.% in natural gas injection.  相似文献   
994.
Cumene is one of the five chemicals with the highest production in the world. In this work, the design by Flegiel was improved to increase the production rate of the cumene process by adding a trans-alkylation reactor, then multi-objective optimization (MOO) using the particles swarm optimization (PSO) algorithm is used to improve the process design. Furthermore, seven multicriteria decision-making (MCDM) methods for selecting an optimal solution from the Pareto-optimal front related to two MOO problems were performed. In this optimization, conflicting objectives such as total capital cost (TCC), energy cost, wastage rate, and safety target are simultaneously minimized in the format of trade-offs. Finally, the results of this work were compared with those reported designs. The optimal solution chosen by MCDM methods is at TCC = 5589, damage index (DI) = 0.044, and material loss = 0.0005.  相似文献   
995.
Poly(vinyl alcohol)/tetraethyl orthosilicate (PVA/TEOS) ion exchange hybrid membranes modified with 3-mercaptopropyltrimethoxysilane (TMPTMS) were prepared by the sol-gel method, and their applications for the removal of lead ions from aqueous solutions in a batch sorption process were studied. The functional groups of the hybrid membranes were characterized by FTIR. Batch adsorption studies such as TMPTMS content, pH, adsorbent dose, contact time, initial concentration and temperature were evaluated. The maximum adsorption capacity of lead ions was found to be 61.62mg g?1, respectively. The kinetic data were analyzed by pseudo-first-order and pseudo-second-order kinetic models. The Freundlich and Langmuir isotherm models were applied to describe the equilibrium data. Thermodynamic parameters indicated that the lead adsorption onto the membrane is an endothermic and spontaneous process. The PVA/TEOS/TMPTMS hybrid membrane is regenerated by 0.5M HNO3/0.1 M HCl in equal ratio solution and the adsorption capacity did not change remarkably after five sorption-desorption cycles.  相似文献   
996.
Novel hydrogel nanocomposites were synthesized by solution polymerization of acrylamide in the presence of carrageenan biopolymer and laponite RD clay. Laponite was used as an inorganic cross-linker. Ammonium persulfate was applied as an initiator. The structure and morphology of the nanocomposites were investigated using XRD, scanning electron microscopy, and transition electron microscopy techniques. The influence of both laponite nanoclay and the carrageenan content on the swelling degree of nanocomposites was studied and it was found that all nanocomposites containing carrageenan component have a high swelling degree compared to a nanocomposite without carrageenan. The obtained nanocomposites were examined to remove a cationic crystal violet (CV) dye from water. The effect of carrageenan and clay contents on the speed of dye adsorption revealed that while the rate of dye adsorption is enhanced by increasing the clay content, it was depressed as the carrageenan content increased in nanocomposite composition. The results showed that the pseudo-second-order adsorption kinetic was predominant in adsorption of CV onto nanocomposites. The experimental equilibrated adsorption capacity of nanocomposites was analyzed using Freundlich and Langmuir isotherm models. The results indicated that the experimental data fit the Langmuir isotherm best. Maximum adsorption capacity was obtained for carrageenan-free nanocomposite with 79.8?mg?g?1 of adsorbed CV onto nanocomposite.  相似文献   
997.
The glycolysis process as a useful approach to recycling flexible polyurethane foam wastes is modeled in this work. To obtain high quality recycled polyol, the effects of influential processing and material parameters, i.e. process time, process temperature, catalyst‐to‐solvent (Cat/Sol) and solvent‐to‐foam (Sol/Foam) ratios, on the efficiency of the glycolysis reaction were investigated individually and simultaneously. For the continuous prediction of process behavior and interactive effects of parameters, an artificial neural network (ANN) model as an efficient statistical‐mathematical method has been developed. The results of modeling for the criteria that determine the glycolysis process efficiency including the hydroxyl value of the recycled polyol and isocyanate functional group conversion prove that the adopted ANN model successfully anticipates the recycling process responses over the whole range of experimental conditions. The Cat/Sol ratio showed the strongest influence on the quality of the recycled polyol among the studied parameters, where the minimum hydroxyl value was obtained at a medium amount of the assigned ratio. For the consumed polyurethane foam, a higher value of this ratio led to an increase in the hydroxyl value and isocyanate conversion. © 2015 Society of Chemical Industry  相似文献   
998.
The polymorphism and crystallinity of poly(vinylidene fluoride) (PVDF) membranes, made from electrospinning of the PVDF in pure N,N‐dimethylformamide (DMF) and DMF/acetone mixture solutions are studied. Influence of the processing and solution parameters such as flow rate, applied voltage, solvent system, and mixture ratio, on nanofiber morphology, total crystallinity, and crystal phase content of the nanofibers are investigated using scanning electron microscopy, wide‐angle X‐ray scattering, differential scanning calorimetric, and Fourier transform infrared spectroscopy. The results show that solutions of 20% w/w PVDF in two solvent systems of DMF and DMF/acetone (with volume ratios of 3/1 and 1/1) are electrospinnable; however, using DMF/acetone volume ratio of 1/3 led to blockage of the needle and spinning process was stopped. Very high fraction of β‐phase (~79%–85%) was obtained for investigated nanofiber, while degree of crystallinity increased to 59% which is quite high due to the strong influence of electrospinning on ordering the microstructure. Interestingly, ultrafine fibers with the diameter of 12 and 15 nm were obtained in this work. Uniform and bead free nanofiber was formed when a certain amount of acetone was added in to the electrospinning solution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42304.  相似文献   
999.
A new, rapid Fourier transform near infrared (FT‐NIR) spectroscopic procedure is described to screen for the authenticity of extra virgin olive oils (EVOO) and to determine the kind and amount of an adulterant in EVOO. To screen EVOO, a partial least squares (PLS1) calibration model was developed to estimate a newly created FT‐NIR index based mainly on the relative intensities of two unique carbonyl overtone absorptions in the FT‐NIR spectra of EVOO and other mixtures attributed to volatile (5280 cm?1) and non‐volatile (5180 cm?1) components. Spectra were also used to predict the fatty acid (FA) composition of EVOO or samples spiked with an adulterant using previously developed PLS1 calibration models. Some adulterated mixtures could be identified provided the FA profile was sufficiently different from those of EVOO. To identify the type and determine the quantity of an adulterant, gravimetric mixtures were prepared by spiking EVOO with different concentrations of each adulterant. Based on FT‐NIR spectra, four PLS1 calibration models were developed for four specific groups of adulterants, each with a characteristic FA composition. Using these different PLS1 calibration models for prediction, plots of predicted vs. gravimetric concentrations of an adulterant in EVOO yielded linear regression functions with four unique sets of slopes, one for each group of adulterants. Four corresponding slope rules were defined that allowed for the determination of the nature and concentration of an adulterant in EVOO products by applying these four calibration models. The standard addition technique was used for confirmation.  相似文献   
1000.
The ZrO2 was treated by various molarities of H2SO4 solution (0, 0.5, 1 and 2) then mixed by MgO and impregnated with 5 wt% of V2O5. The synthesized catalysts were characterized by XRD, FESEM, PSD, EDX, BET and FTIR techniques. According to the results obtained by characterization studies, the modification of MgO-ZrO2 support by various molarities of H2SO4 solution had a great impact on the crystallinity, morphology and functional groups of prepared nanocatalysts. On the other hand, the catalytic activity of synthesized nanocatalysts in the oxidative dehydrogenation of ethane to ethylene is affected by the sulfur content on the support. The crystalline structures of MgO and ZrO2 were confirmed by XRD analysis. The crystallinity of tetragonal ZrO2 was decreased by increasing H2SO4 molarity used in ZrO2 (Sx) synthesising. The highest catalytic performance and ethylene productivity (C2H4 yield of 48% and ethane conversion of 79% at 700 °C) were obtained on the V2O5/MgO-ZrO2 (S1) nanocatalyst. This could be related to the superior acid-base property, smaller particles, better dispersion of active phase and uniform morphology of V2O5/MgO-ZrO2 (S1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号