首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   822篇
  免费   12篇
  国内免费   2篇
电工技术   7篇
综合类   1篇
化学工业   195篇
金属工艺   44篇
机械仪表   39篇
建筑科学   16篇
能源动力   45篇
轻工业   81篇
水利工程   8篇
石油天然气   4篇
无线电   49篇
一般工业技术   175篇
冶金工业   68篇
原子能技术   12篇
自动化技术   92篇
  2024年   7篇
  2023年   15篇
  2022年   18篇
  2021年   26篇
  2020年   27篇
  2019年   18篇
  2018年   26篇
  2017年   24篇
  2016年   29篇
  2015年   25篇
  2014年   31篇
  2013年   64篇
  2012年   39篇
  2011年   41篇
  2010年   33篇
  2009年   32篇
  2008年   29篇
  2007年   19篇
  2006年   33篇
  2005年   18篇
  2004年   11篇
  2003年   13篇
  2002年   24篇
  2001年   13篇
  2000年   16篇
  1999年   9篇
  1998年   19篇
  1997年   12篇
  1996年   23篇
  1995年   8篇
  1994年   8篇
  1993年   6篇
  1992年   12篇
  1991年   5篇
  1990年   10篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1984年   8篇
  1983年   6篇
  1981年   6篇
  1980年   4篇
  1979年   8篇
  1978年   4篇
  1977年   5篇
  1976年   7篇
  1975年   6篇
  1974年   4篇
  1973年   4篇
排序方式: 共有836条查询结果,搜索用时 15 毫秒
91.
Polymer Bulletin - The aim of this study was to elaborate a suitable hydrogel to be used as drug carrier for antileishmanial treatment. Therefore, a PVP hydrogel was synthesized using gamma...  相似文献   
92.
D.R. Salem  N. Vasanthan 《Polymer》2009,50(7):1790-1796
Polyamide 66 fibers were thermoset in a torsion-bending deformation at various temperatures up to 240 °C. Some of the fibers were heat-set at constant length prior to the deformation at presetting temperatures of 150 °C and 200 °C to vary the structural state of the starting material. Fractional recovery was measured after various combinations of temperature and time. It was found that heat setting of PA66 is dominated by time-dependent stress relaxation exhibiting time-temperature equivalence. Increased crystallinity, and/or other molecular rearrangements occurring during presetting, impose additional constraints on molecular mobility, which delay onset of the flow regime and increase the time constant of relaxation at a given temperature. The thermosetting characteristics of PA66 fibers are very similar to those of poly(ethylene terephthalate) fibers. For both polymers, superposing the curves of fractional recovery vs. setting time at different temperatures produce satisfactory master curves, without the need for vertical shifting of the data. Arrhenius plots yield approximate activation energies for the thermosetting flow process of 35-65 kcal/mol in PA66 and 95-115 kcal/mol in PET.  相似文献   
93.
    
The cyclooxygenase-2 (COX-2) is a potent enzyme that converts arachidonic acid to prostaglandins (PG), including PGE2, a key mediator of inflammation and angiogenesis. Importantly, COX-2 is activated in response to inflammatory stimuli, where it is also believed to promote the development and progression of head and neck cancers (HNC). COX-2 can mediate its protumorigenic effect through various mechanisms, such as inducing cell proliferation, inhibition of apoptosis, and suppressing the host’s immune response. Furthermore, COX-2 can induce the production of vascular endothelial growth factors, hence, promoting angiogenesis. Indeed, the ability of COX-2 inhibitors to selectively restrict the proliferation of tumor cells and mediating apoptosis provides promising therapeutic targets for cancer patients. Thus, in this comprehensive review, we summarized the reported differential expression patterns of COX-2 in different stages of head and neck carcinogenesis—from potentially premalignant lesions to invasive carcinomas. Furthermore, we examined the available meta-analysis evidence for COX-2 role in the carcinogenesis of HNC. Finally, further understanding of the biological processes of COX-2 and its role in orchestrating cell proliferation, apoptosis, and angiogenesis may give therapeutically beneficial insight to develop the management plan of HNC patients and improve their clinical outcomes.  相似文献   
94.
    
Composites of Al2O3/ZrO2 (containing 25, 50, and 75 vol% ZrO2) were prepared by mixing Al2O3 and ZrO2 suspensions. The microstructural control via two-step sintering (TSS) was the main objective of this work. For this purpose, different sintering curves were constructed, aiming to achieve the best temperature combination for the sintering steps that provides higher density and finer microstructure. The results were compared with single-step sintering (SSS). Furthermore, microhardness and fracture toughness were measured for the best TSS specimens under each composition. The results showed that the high densities were obtained, and the reduction of grain size was greater than 40% for two-step sintered specimens, compared to SSS ones. Consequently, microhardness values increased. However, fracture toughness values remained unchanged.  相似文献   
95.
The toughening and strengthening of transparent ceramics is challenging because microstructural alterations typically lead to light scattering. Here, controlled precipitation of α‐Al2O3 from nonstoichiometric spinel is explored to demonstrate unique control over the evolution of second phase Al2O3 and how the microstructure might be altered to enhance fracture toughness while minimizing light scatter. Alumina‐rich magnesium aluminate spinel, MgO·nAl2O3, where n=2, was hot pressed and HIPed to produce fully dense, single‐phase material. The material was then heat treated in air at 1573 K for up to 20 hours to create a two‐phase spinel‐Al2O3 composite. The fracture toughness varies from 0.88 to 2.47 MPa√m depending on the microstructure; enhanced toughness at the surface was due to increased crack tortuosity at phase boundaries, but residual tensile stresses were observed in the interior of the material. Precipitation causes local volume contraction and the formation of porosity, decreasing optical transmission, especially for heat treatment times longer than 5 hours.  相似文献   
96.
In this study, Co/Cu-decorated carbon nanofibers are introduced as novel electrocatalyst for methanol oxidation. The introduced nanofibers have been prepared based on graphitization of poly(vinyl alcohol) which has high carbon content compared to many polymer precursors for carbon nanofiber synthesis. Typically, calcination in argon atmosphere of electrospun nanofibers composed of cobalt acetate tetrahydrate, copper acetate monohydrate, and poly(vinyl alcohol) leads to form carbon nanofibers decorated by CoCu nanoparticles. The graphitization of the poly(vinyl alcohol) has been enhanced due to presence of cobalt which acts as effective catalyst. The physicochemical characterization affirmed that the metallic nanoparticles are sheathed by thin crystalline graphite layer. Investigation of the electrocatalytic activity of the introduced nanofibers toward methanol oxidation indicates good performance, as the corresponding onset potential was small compared to many reported materials; 310 mV (vs. Ag/AgCl electrode) and a current density of 12 mA/cm2 was obtained. Moreover, due to the graphite shield, good stability was observed. Overall, the introduced study opens new avenue for cheap and stable transition metals-based nanostructures as non-precious catalysts for fuel cell applications.  相似文献   
97.
    
The extraction of heavy metals from industrial effluents using efficient adsorbents is crucial for wastewater treatment and beneficial for metal recycling. In this study, the removal of Cu(II) from an acidic solution by commercial resins Dowex G-26 and Puromet™ MTS9570 was investigated. The influences of contact time, solution concentration, pH, temperature, and a resin dosage on the adsorption process were studied with batch technique. The optimum adsorption conditions were obtained at a concentration of 1100 mg/L Cu, contact time of 30 min, pH 3.5, and resin dosage of 0.025 g/ml for the removal of 99.9% and 90% of copper ions by G-26 and MTS9570, respectively. The experimental data of copper adsorption were analyzed using the Langmuir, Freundlich, and Temkin isotherm models. The highest metal uptakes of 41.67 and 37.70 mg/g were observed for Dowex G-26 and MTS9570, respectively. It was found that both resins had higher adsorption capacities than the substances reported in the literature. The adsorption kinetic studies showed that the copper adsorption process could be better described by the pseudo-second order model. Adsorption occurs spontaneously under endothermic conditions, which indicates the endothermic nature of the process.  相似文献   
98.
We review some recent research developments on structure development during drawing of poly(ethylene terephthalate) film, and we report a study of constant-load drawing of amorphous PET film at temperatures of 120°C and 132°C, including the effects of redrawing high-temperature drawn film at lower temperature. To permit constant-load drawing at high temperature without inducing crystallization in the undrawn specimen, a drawing instrument was built that permits very rapid heating of the sample, and its operation is described. The initial stage of drawing at high temperatures is characterized by polymer flow where, owing to high rates of molecular relaxation, neither molecular orientation nor crystallization occurs. Strain-rate increases sharply in the course of the deformation, reducing the time available for relaxation, and the chains start to orient at a draw ratio that depends on temperature. Orientation rapidly reaches a saturation level, which is lower at the higher draw temperature. Crystallization onset seems to lag only slightly behind orientation onset because the critical orientation for inducing crystallization is very low at these temperatures. It appears that there is time for crystallization to proceed to pseudo-equilibrium values corresponding to a particular orientation level, which differs from previous results obtained from constant-force drawing at lower temperatures, and possible reasons for this are discussed. In two-stage drawing, where film drawn at 132°C was redrawn along the same axis at 100°C, high draw ratios were obtained despite the high strain rates, and the levels of noncrystalline orientation and crystallinity were similar to the levels expected from single stage drawing at 100°C.  相似文献   
99.
The growth of semiconductor (SC) nanowires (NW) by CVD using Au-catalyzed VLS process has been widely studied over the past few years. Among others SC, it is possible to grow pure Si or SiGe NW thanks to these techniques. Nevertheless, Au could deteriorate the electric properties of SC and the use of other metal catalysts will be mandatory if NW are to be designed for innovating electronic. First, this article's focus will be on SiGe NW's growth using Au catalyst. The authors managed to grow SiGe NW between 350 and 400°C. Ge concentration (x) in Si1-xGex NW has been successfully varied by modifying the gas flow ratio: R = GeH4/(SiH4 + GeH4). Characterization (by Raman spectroscopy and XRD) revealed concentrations varying from 0.2 to 0.46 on NW grown at 375°C, with R varying from 0.05 to 0.15. Second, the results of Si NW growths by CVD using alternatives catalysts such as platinum-, palladium- and nickel-silicides are presented. This study, carried out on a LPCVD furnace, aimed at defining Si NW growth conditions when using such catalysts. Since the growth temperatures investigated are lower than the eutectic temperatures of these Si-metal alloys, VSS growth is expected and observed. Different temperatures and HCl flow rates have been tested with the aim of minimizing 2D growth which induces an important tapering of the NW. Finally, mechanical characterization of single NW has been carried out using an AFM method developed at the LTM. It consists in measuring the deflection of an AFM tip while performing approach-retract curves at various positions along the length of a cantilevered NW. This approach allows the measurement of as-grown single NW's Young modulus and spring constant, and alleviates uncertainties inherent in single point measurement.  相似文献   
100.
Supported gold, palladium and gold–palladium catalysts have been used to oxidatively dehydrogenate cyclohexane and cyclohexenes to their aromatic counterpart. The supported metal nanoparticles decreased the activation temperature of the dehydrogenation reaction. We found that the order of reactivity was Pd ≥ Au–Pd > Au supported on TiO2. Attempts were made to lower the reaction temperature whilst retaining high selectivity. The space-time yield of benzene from cyclohexane at 473 K was determined to be 53.7 mol/kgcat/h rising to 87.3 mol/kgcat/h at 673 K for the Pd catalyst. Increasing the temperature in this case improved conversion at a detriment to the benzene selectivity. Oxidative dehydrogenation of cyclohexene over AuPd/TiO2 or Pd/TiO2 catalysts was found to be very effective (conversion >99% at 423 K). These results indicate that the first step in the reaction sequence of cyclohexane to cyclohexene is the slowest step. These initial results suggest that in a fixed-bed reactor the oxidative dehydrogenation in the presence of oxygen, palladium and gold–palladium catalysts are readily able to surpass current literature examples and with further modification should yield even higher performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号