首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   27篇
  国内免费   2篇
电工技术   2篇
化学工业   121篇
金属工艺   14篇
机械仪表   8篇
建筑科学   20篇
矿业工程   1篇
能源动力   21篇
轻工业   15篇
水利工程   4篇
石油天然气   4篇
无线电   28篇
一般工业技术   78篇
冶金工业   14篇
原子能技术   2篇
自动化技术   80篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   21篇
  2020年   15篇
  2019年   13篇
  2018年   28篇
  2017年   30篇
  2016年   25篇
  2015年   22篇
  2014年   28篇
  2013年   50篇
  2012年   31篇
  2011年   33篇
  2010年   25篇
  2009年   19篇
  2008年   16篇
  2007年   7篇
  2006年   10篇
  2005年   1篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  1999年   1篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有412条查询结果,搜索用时 15 毫秒
31.
In this work, CdTiO3 nanoparticles were synthesized through reaction between Cd(CH3COO)2.2H2O, Ti(OC4H9)4, trimesic acid as a new chelating agent and ethanol as solvent by Pechini sol–gel method. X-ray diffraction (XRD) patterns showed that CdTiO3 nanostructures have rhombohedral structure with diameter of about 35.61 nm. The structure, morphology and size of CdTiO3 nanoparticles were characterized by FT-IR, XRD, SEM and EDAX. The optical properties of the products were studied by DRS. Based on the results of experiments, it was found that temperature and time of calcination, pH and the solvent of reaction are important parameters for formation of CdTiO3 nanoparticles. Utilizing trimesic acid (benzene-1,3,5-tricarboxylic acid) as a new chelating agent for preparation of CdTiO3 nanostructures was initiative of this work.  相似文献   
32.
Researchers have examined different approaches to improve damage tolerance of discontinuously reinforced aluminum (DRA). In this study, three-layer DRA laminates containing two exterior layers of Al6061-15 vol.% SiCp and an interlayer of Al1050 were fabricated by hot roll bonding. Interfacial adhesion between the layers was controlled by means of rolling stain. The results of shear test revealed that, the bonding strength of laminates was influenced by number of rolling passes. Considering this effect, the role of interfacial bonding on the toughness of laminates was studied under three-point bending in the crack divider orientation. The quasi-static toughness of the laminates was greater than that of the monolithic DRA. Plastic deformation of the ductile interlayer and interfacial delamination were found as the major sources of energy absorption in this fracture process. It was shown that interfacial adhesion in these laminate does not alter the initiation energy in quasi-static test. Propagation energy under same loading condition, however, illustrated significant sensitivity to the interfacial bonding. The results of the current study reveal that improving the interfacial adhesion by means of rolling strain eliminates the ease of plastic deformation of the ductile interlayer and thus reduces the contribution of this mechanism in quasi-static toughness of the laminate.  相似文献   
33.
In this paper we study combined translational and rotational (general) motion of planar rigid bodies in the presence of dry coulomb friction contact. Despite the cases where the body has pure translational/ rotational motion or can be assumed as a point mass, during the general motion, distinct points of the rigid body move in different directions which cause the friction force vector at each point to be different. Therefore, the direction and the magnitude of the overall friction force cannot be intuitively defined. Here the concept of instantaneous center of rotation is used as an effective method to determine the resultant friction force and moment. The main contribution of this paper is to propose novel stick-slip switching conditions for the general in-plane motion of rigid bodies. Simulation results for some combination of external forces are provided and some experimental tests are designed and conducted for practical verification of the proposed stick-slip conditions.  相似文献   
34.
BACKGROUND: Graft polymerization of vinylic monomers onto natural backbones is an efficient approach for the synthesis of natural‐based superabsorbents. The nature of the monomers will affect the swelling behaviour of the superabsorbents. Here, a novel superabsorbent was synthesized through grafting of acrylic acid onto collagen in the presence of hydrophobic styrene as co‐monomer. Subsequently, the effect of styrene on the swelling behaviour of the superabsorbent was studied. RESULTS: The highly swelling superabsorbent was prepared by introducing styrene into a collagen‐graft‐poly(acrylic acid) hydrogel. By inclusion of styrene monomer, the swelling capacity of the hydrogel was increased; this is discussed according to the network composition. The effect of swelling media (salt solutions and various pH values) was investigated. The results of absorbency under load showed that hydrogels containing phenyl groups exhibit better behaviour; however, by introducing styrene, the rate of water uptake and resistance to water holding under heating was reduced. Scanning electron micrographs of hydrogels revealed a decrease in porosity on using styrene. CONCLUSION: Inclusion of styrene monomer in the ionic superabsorbent caused high swelling capacity with better absorbency under load. This can be used to prepare highly swelling superabsorbents with good mechanical properties. The pH reversibility of the synthesized superabsorbent makes it a candidate for use in the controlled release of drugs and in agrochemicals. Copyright © 2008 Society of Chemical Industry  相似文献   
35.
In this paper, tensile strain energy absorption of two different hybrid modified epoxies has been systematically investigated. In one system, epoxy has been modified by amine-terminated butadiene acrylonitrile (ATBN) and hollow glass spheres as fine and coarse modifiers, respectively. The other hybrid epoxy has been modified by the combination of ATBN and recycled Tire particles. The results of fracture toughness measurement of blends revealed synergistic toughening for both hybrid systems in some formulations. However, no evidence of synergism is observed in tensile test of hybrid samples. Scanning electron microscope (SEM), transmission optical microscope (TOM) and finite element (FEM) simulation were utilized to study deformation mechanisms of hybrid systems in tensile test. It is found that coarse particles induce stress concentration in hybrid samples. This produces non-uniform strain localized regions which lead to fracture of hybrid samples at lower tensile loading and energy absorption levels.  相似文献   
36.
We examine the status of enterprise-class server clusters and the communication issues that need to be addressed in future systems. With increasing system performance, new approaches beyond traditional copper-only communication solutions have to be examined. Parallel optics is an attractive solution to overcome copper's shortcomings, but traditional approaches to parallel optics have had their own limitations. We describe a new approach to parallel optics - dense parallel optics - and its relevance to enterprise servers. After discussing system communication needs, we examine dense parallel optics from both the passive cabling and active component views. We explain how dense parallel optics offers a unique way to address the performance, cost, reliability, and scalability of server systems. We also discuss how current approaches to dense parallel optics afford system opportunities beyond simple data transport.  相似文献   
37.
A.A. Jafari  M. Bagheri   《Thin》2006,44(1):82-90
In this research, the free vibration analysis of cylindrical shells with circumferential stiffeners, i.e. rings with non-uniform stiffeners eccentricity and unequal stiffeners spacing is investigated using analytical, experimental and finite elements (FE) methods. Ritz method is applied in analytical solution while stiffeners treated as discrete elements. The polynomial functions are used for Ritz functions and natural frequency results for simply supported stiffened cylindrical shell with equal rings spacing and constant eccentricity is compared with other's analytical and experimental results, which showed good agreement. Also, a stiffened shell with unequal rings spacing and non-uniform eccentricity with free–free boundary condition is considered using analytical, experimental and FE methods. In experimental method, modal testing is performed to obtain modal parameters, including natural frequencies, mode shapes and damping in each mode. In FE method, two types of modeling, including shell and beam elements and solid element are used, applying ANSYS software. The analytical and the FE results are compared with the experimental one, showing good agreements. Because of insufficient experimental modal data for non-uniformly stiffeners distribution, the results of modal testing obtained in this study could be as useful reference for validating the accuracy of other analytical and numerical methods for free vibration analysis.  相似文献   
38.
In recent decades, great attention has been devoted to the toughening of isotactic poly(propylene) (PP) with elastomers such as ethylene–propylene rubber (EPR). The most important reasons for this interest are the moderate cost and favorable properties of PP. This article is focused on the role of EPR in the deformation and fracture mechanism of PP/EPR blends with different volume fractions of elastomer phase. Differential scanning calorimetry (DSC), tensile tests, and microscopy techniques were used in this study. The fracture mechanism of isotactic PP toughened by EPR (PP/EPR) has also been studied by three point bending (3‐PB) and four point bending (4‐PB) tests. Rubber particle cavitation appears to be the main mechanism of microvoid formation, although some matrix/particle debonding was observed. The investigation of the toughening mechanism shows that a wide damage zone spreads in front of the pre‐crack. Optical microscopy (OM) illustrates that, in pure PP, crazing is the only fracture mechanism, and no evidence of shear yielding is found, while in PP blends craze‐like features associated with shear yielding are observed, which have been identified as high shear localized dilatational bands. This type of deformation pattern supports a model previously proposed by Lazzeri 1 to explain the interparticle distance effect on the basis of the stabilization effect on dilatational band propagation exerted by stretched rubber particles. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3767–3779, 2003  相似文献   
39.
Bioleaching of copper from the flue dust of the Sarcheshmeh copper smelter has been investigated. A series of continuous tests were carried out in two-stages of airlift bioreactors inoculated with the acidophilic, iron and sulfur oxidizing bacteria, initially derived from acid mine drainage. The effects of different parameters such as pulp density, retention time and temperature on the mesophile bioleach performance of the copper sulfide rich dust were evaluated after pre-leaching with dilute acid. Pulp densities of 2% and 4% gave the same oxidation–reduction potential in both reactors. However, increasing the average pulp density to 7% generated an unstable oxidation–reduction potential in the first bioreactor at 34 °C. Overall copper extractions calculated for 2%, 4% and 7% pulp densities were 90%, 89% and 86% with mean retention times of 2.7, 4 and 5 days, respectively. The process is net acid consuming and has the potential for further development and feasibility studies.  相似文献   
40.
Copolypropylene/organoclay nanocomposites are prepared by melt intercalation method in this research. Two different routes for addition of compatibilizer are examined, i.e. addition in the twin‐screw extruder along with the polymer and the clay powder simultaneously and premixing the compatibilizer with the reinforcement in a batch mixer before addition to the polypropylene (PP) matrix. Morphology, tensile and impact properties and deformation mechanisms of the samples made via two procedures are studied and compared with those of the noncompatibilized system. To study the structure of nanocomposites, x‐ray diffraction and transmission electron microscopy techniques are utilized. The deformation mechanisms of different samples are examined via reflected and transmitted optical microscopy. The results reveal that introduction of compatibilizer and also the procedure in which the compatibilizer is added to the compound, affect structure and mechanical properties of nanocomposite. The elastic modulus of PP‐clay nanocomposite has increased 11.5% with incorporation of compatibilizer. Also, introduction of organoclay without compatibilizer facilitates crazing at the notch tip of PP in 3PB testing. Incorporation of compatibilizer, however, makes difficulties in initiation and growth of crazes at the notch tip. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号