首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
  国内免费   2篇
化学工业   14篇
金属工艺   12篇
机械仪表   6篇
建筑科学   8篇
矿业工程   1篇
能源动力   5篇
轻工业   4篇
石油天然气   3篇
无线电   5篇
一般工业技术   19篇
冶金工业   11篇
原子能技术   1篇
自动化技术   12篇
  2023年   6篇
  2022年   5篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   9篇
  2017年   5篇
  2016年   12篇
  2015年   1篇
  2014年   4篇
  2013年   17篇
  2012年   8篇
  2011年   8篇
  2010年   4篇
  2009年   1篇
  2006年   1篇
  1998年   2篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
51.
In this study, cold roll bonding process characteristics of IF steel strips, such as bond strength, threshold deformation, undulation of peeling force, and peeled surface, in the presence of SiC nanoparticles were examined and compared to those of an IF steel strip without nanoparticles. The bond strength was evaluated by the peeling test and scanning electron microscopy. It was found that when the thickness reduction was increased, the peeling force of IF steel strips improved. The results also indicated that the presence of silicon carbide nanoparticles decreased the bond strength of IF steel strips when compared to the strips without nanoparticles for the same thickness reduction. When the thickness reduction was increased, the undulation of average peeling force values increased at a constant nanoparticle content. Also, the strips without nanoparticles had a lower undulation value as compared to the strips with SiC nanoparticles. In addition, in the presence of silicon carbide, when the nanoparticles’ content was increased, the undulation of average peeling force values decreased at a constant thickness reduction. Finally, it was found that the bond strength of IF steel strips was less than that of aluminum and copper strips. This was attributed to their crystal structure.  相似文献   
52.
This work investigates the effect of SiC particles on the microstructure and mechanical properties of dissimilar friction stir welding between AA6061-T6 and AA2024-T351. Two variations in the size of SiC particles, along the joint line, various groove width, and tool offset, were used for the welding. It was found that the joints made by rotational speed of 800?rev?min?1, travelling speed of 31.5?mm?min?1, groove width of 0.3?mm, and tool offset of 0.5?mm exhibited the most uniform distribution of particles for both micro- and nano-scale SiC particles. Additionally, the smaller and rounded equiaxed particles result in easier material flow, a more uniform metal matrix composite, the smallest grain size in the stir zone and the highest tensile strength.  相似文献   
53.
Layered materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB) process, as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing process. In this paper, characteristics such as bond strength and threshold deformation of as-received commercial pure aluminum (AA1100) strips prepared by the cold roll bonding process are investigated. Bond strength is evaluated by the peeling test. The main factors evaluated included effects of different annealing time, annealing temperature, hardness, and the effect of friction coefficient on bond strength. It is found that bond strength is enhanced by increasing annealing time, friction coefficient, and annealing temperature but that it is inversely proportional to hardness.  相似文献   
54.
In the present work, tribocorrosion behavior of Al/Al2O3 composite strips manufactured by anodizing and accumulative roll bonding (ARB) processes was investigated. The alumina quantity was 0.48, 1.13, and 3.55 vol.% in the aluminum matrix. Tribocorrosion experiments were conducted using a ball-on-plate tribometer, where the sliding contact was fully immersed in 1 wt.% NaCl solution. The composite sample served as a working electrode and its open circuit potential (OCP) was monitored before, during, and after sliding. In order to characterize the electrochemical behavior of the surface before and after sliding electrochemical impedance spectroscopy (EIS) was used and wear was also measured. Furthermore, the influence of quantity and distribution of reinforcement particles in the matrix on OCP and EIS was evaluated. It was found that the quantity, shape, size, and dispersion of alumina particles in the aluminum matrix strongly affected the measured tribocorrosion characteristics. The results showed that inhomogeneous, lower quantity, fine, and acicular-shape alumina particles cause serious materials loss in tribocorrosion process.  相似文献   
55.
The compressibility behavior of Al–SiC nanocomposite powders was examined and the density-pressure data were analyzed by linear and non-linear compaction equations. SiC particles with an average size of 50 nm were mixed with gas-atomized aluminum powder (40 μm average size) at different volume fractions (up to 20 vol%) and compacted in a rigid die at various pressures. In order to highlight the effect of reinforcement particle size, the compressibility of micrometric SiC particles of two sizes (1 and 40 μm) was also examined. Analysis of the compressibility data indicated hindering effect of the hard ceramic particles on the plastic deformability of soft aluminum matrix, particularly at high volume fractions. More pronounced effect on the yield pressure was obtained for the nanometric particles compared with the micrometric ones. Nevertheless, better particles rearrangement was taken place when the ultrafine SiC particles were utilized. In light of the experimental and theoretical analysis, the densification mechanism of aluminum matrix composites and the effect of reinforcement particle size and volume fraction are discussed.  相似文献   
56.
In this paper the results of numerical study of the mixed convection heat transfer of Al2O3–water nanofluid in a horizontal annuli are presented. Steady, laminar flows in symmetric configurations are considered. Single-phase fluid approach is adopted for nanofluid modeling. The governing equations are discretized using the finite-volume method. A SIMPLE-like algorithm has been applied for pressure–velocity coupling on the collocated arrangement. In order to validate the code performance, the numerical results are compared with those available in the literature and good agreement is achieved. The effects of some important parameters such as nanoparticle volume fraction, aspect ratio, Grashof number, and heat flux ratio are studied and discussed in detail. In general, it is observed that the local Nusselt number increases with increase in nanoparticle concentration, Grashof number, and radius ratio. However, when increasing the nanoparticle concentration there are considerable increments in pressure drop and pumping power, which are not desirable. On the other hand, changes in the skin friction coefficient are negligible.  相似文献   
57.
Urban air quality is of considerable importance in many cities throughout Europe and the USA. In particular, current EU legislation has driven an expansion of monitoring of more pollutants at more sites. At present in the UK, real time readings are now available for benzene, buta-1,3-diene and other volatile organic compounds, airborne fine dust (PM10), CO, 03, SO2, and NOX. Carbon monoxide is produced to varying degrees in all combustion processes but more than 90% is caused by emissions from petrol vehicle exhausts. The World Health Ogranisation guidelines for exposure to the gas is < 10 ppm for 8 h and 85 ppm for periods not exceeding 15 min. All the pollutants mentioned above are monitored by different detection techniques and it has been the authors' philosophy to develop instrumentation which can monitor all the different pollutants using a single detector. To this end, a multiphoton laser based procedure, using simple ionization chambers, has been developed to detect the different pollutants with different wavelengths. For CO, a 2 + 1 resonance enhanced multiphoton ionization (REMPI) scheme at 230 nm can be used with detection limits of about 1 ppm.  相似文献   
58.
This paper presents a new speech enhancement system that works in wavelet domain. The core of system is an improved WaveShrink module. First, different parameters of WaveShrink are studied; then, based on the features of speech signal, an improved wavelet-based speech enhancement system is proposed. The system uses a novel thresholding algorithm, and introduces a new method for threshold selection. Moreover, the efficiency of system has been increased by selecting more suitable parameters for voiced, unvoiced and silence regions, separately. The proposed system has been evaluated on different sentences under various noise conditions. The results show a plausible improvement in performance of system, in comparison with similar approaches.  相似文献   
59.
The mechanism of transverse-ply failure in cross-ply laminates of glass fibre thermoset composites has been investigated. It is shown that fibre debonding initiates failure, the debonds subsequently joining up to form a transverse crack nucleus. In the epoxy system investigated fibre debonding causes an observable whitening effect and small modulus change; this effect is reversible in that rebonding can be brought about by further heat treatment. It is shown that in the case of the polyester system the larger thermal strains introduced during the curing cycle cause debonding of the composite and therefore the whitening effects are not observed on application of load. Simple models for the prediction of the observed effect of glass fibre volume fraction on transverse failure strain are proposed.  相似文献   
60.
Blasting is the process of use of explosives to excavate or remove the rock mass. The main objective of blasting operation is to provide proper rock fragmentation and to avoid undesirable environmental impacts such as ground vibration, flyrock and back-break. Therefore, proper predicting and subsequently optimizing these impacts may reduce damage on facilities and equipment. In this study, an artificial neural network (ANN) was developed to predict flyrock and back-break resulting from blasting. To do this, 97 blasting works in Delkan iron mine, Iran, were investigated and required blasting parameters were collected. The most influential parameters on flyrock and back-break, i.e. burden, spacing, hole length, stemming, and powder factor were considered as model inputs. Results of absolute error (Ea) and root mean square error (RMSE) (0.0137 and 0.063 for Ea and RMSE, respectively) reveal that ANN as a powerful tool can predict flyrock and back-break with high degree of accuracy. In addition, this paper presents a new metaheuristic approximation approach based on the ant colony optimization (ACO) for solving the problem of flyrock and back-break in Delkan iron mine. Considering changeable parameters of the ACO algorithm, blasting pattern parameters were optimized to minimize results of flyrock and back-break. Eventually, implementing ACO algorithm, reductions of 61 and 58 % were observed in flyrock and back-break results, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号