首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1289篇
  免费   76篇
  国内免费   3篇
电工技术   13篇
化学工业   381篇
金属工艺   16篇
机械仪表   26篇
建筑科学   27篇
矿业工程   1篇
能源动力   58篇
轻工业   340篇
水利工程   9篇
石油天然气   15篇
无线电   90篇
一般工业技术   193篇
冶金工业   67篇
原子能技术   1篇
自动化技术   131篇
  2024年   4篇
  2023年   15篇
  2022年   45篇
  2021年   73篇
  2020年   49篇
  2019年   33篇
  2018年   66篇
  2017年   48篇
  2016年   54篇
  2015年   40篇
  2014年   59篇
  2013年   82篇
  2012年   75篇
  2011年   109篇
  2010年   73篇
  2009年   88篇
  2008年   64篇
  2007年   70篇
  2006年   37篇
  2005年   42篇
  2004年   25篇
  2003年   25篇
  2002年   30篇
  2001年   16篇
  2000年   16篇
  1999年   13篇
  1998年   24篇
  1997年   13篇
  1996年   11篇
  1995年   11篇
  1994年   12篇
  1993年   4篇
  1992年   8篇
  1991年   3篇
  1990年   7篇
  1989年   5篇
  1988年   5篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1970年   1篇
  1967年   1篇
排序方式: 共有1368条查询结果,搜索用时 0 毫秒
71.
Water treatment process involving simultaneous action of adsorption on different nano and organo-modified nano-clays followed by coagulation-flocculation by alum and poly aluminium chloride (PAC) has been evaluated for the removal of PAHs (naphthalene, acenaphthalene, phenanthrene, fluoranthene, anthracene, and pyrene) from water. When clay minerals along with alum and PAC were used for treatment, 37.4–100.0% removal of PAHs was observed compared to 20–38% removal using normal water treatment process with either alum or alum + PAC. The effectiveness of clay minerals for removal of PAHs followed the order (P < 0.05): halloysitenano-clay (HN-clay) < normal bentonite (NB-clay) < hydrophilic nano-bentonite (HNB-clay) < nano-montmorillonite modified with dimethyl dialkyl amine (DMDA-M-clay) ≈ nano-montmorillonite modified with octadecylamine and aminopropyltriethoxysilane (ODAAPS-M-clay) ≈ nano-montmorillonite modified with octadecylamine (ODA-M-clay) in combination with alum + PAC. The modified treatment process (alum + PAC + clay minerals), where water was initially treated with clays followed by normal process of coagulation (alum + PAC), was found to be the most effective method with maximum removal for ODAAPS-M-clay (97.7–100.0%) which is at par wih ODA-M (97.0–100.0%), and DMDA-M-clay (94.8–100%). The removal of PAHs varied in the order: naphthalene ≈ acenaphthalene > anthracene ≈ pyrene > phenanthrene > fluoranthrene. The treatment combination having the maximum removal capacity was also used eficiently for the removal of PAHs from natural and fortified natural water. This article demonstrated adsorption-coagulation integrated system has the potential to remediate PAHs polluted water.  相似文献   
72.
Reduced protein quality is one of the concerns currently confronting the supply and utilization of wheat distillers dried grain with solubles (DDGS) as an animal feed ingredient. This study assessed the protein quality of wheat DDGS, expressed as acid detergent insoluble crude protein (ADICP) and lysine content, by blending wet distillers grain (WDG) with varying condensed distillers solubles (CDS) levels and drying using forced air convection, microwave, and microwave–convection methods. As the CDS level was increased, the protein content of wheat DDGS generated from the three drying methods increased. Interactions of CDS level with drying air temperature, microwave power, and microwave–convection settings had a significant effect (p < 0.05) on average ADICP and lysine contents. Higher ADICP and lower lysine contents were observed in samples dried at higher temperature, microwave power, and microwave convection settings. Further, the CDS level significantly affected the color parameters of microwave- and microwave–convection-dried samples and the drying air temperature–CDS level interaction significantly affected the color of forced air convection–dried samples. Significant lysine content–redness, ADICP–lightness color parameter, and ADICP–total color difference correlations were found in forced air convection–, microwave-, and microwave–convection-dried samples, respectively. Microwave and microwave–convection drying achieved desirable protein quality associated with low-temperature drying at much shorter times.  相似文献   
73.
74.
21st Century is treated as the century for highly branched macromolecules, because of their unique structural architecture and outstanding performance characteristics, in the field of polymer science. In the present study, castor oil-based two hyperbranched polyurethanes (HBPUs) were synthesized via A2 + B3 approach using castor oil or monoglyceride of the castor oil as the hydroxyl containing B3 reactant and toluene diisocyanate (TDI) as an A2 reactant along with 1,4-butane diol (BD) as the chain extender and poly(?-caprolactone) diol (PCL) as a macroglycol. The adopted ‘high dilution and slow addition’ technique offers hyperbranched polymers with high yield and good solubility in most of the polar aprotic solvents. Fourier transforms infra-red spectroscopy (FTIR) and nuclear magnetic resonance (NMR) analyses confirmed the chemical structure of synthesized polymers, while wide angle X-ray diffraction (WXRD) and scanning electron microscope (SEM) resulted the insight of their physical structures. The degree of branching was calculated from 1H NMR and found to be 0.57 for castor oil based hyperbranched polyurethane (CHBPU), while it was 0.8 for monoglyceride based hyperbranched polyurethane (MHBPU). The studies showed that MHBPU and CHBPU exhibited tensile strength 11 MPa and 7 MPa, elongation at break 695% and 791%, scratch hardness 5 kg and 4.5 kg, gloss 84 and 72, respectively. Thermal properties like thermo stability, melting point, enthalpy, degree of crystallinity and glass transition temperature (Tg); and chemical resistance in different chemical media were found to be almost equivalent for both the polyurethanes. The measurements of dielectric constant and lost factor indicated that both the HBPUs behave as dielectric materials. Thus the synthesized HBPUs have the potential to be used as advanced surface coating materials.  相似文献   
75.
In this work the thermal and transport properties of dichloromethane in blends of a bottle‐grade polyethylene terephthalate copolymer, PET, and a liquid crystalline polymer, LCP, were measured. Thermal characterizations of the blends were made by modulated differential scanning calorimetry and dynamic mechanical thermal analyses. An approximated LCP “bulk orientation” was also calculated by wide angle X‐ray diffraction. The morphology was analyzed by scanning electron microscopy. The resulting sorption curves of pure PET, and the B20, B40 and B60 blends were sigmoid type curves, while the sorption curve of the B80 blend was a two‐stage type curve. The diffusion coefficients of the B20 and B40 blends were found to be the lowest of all the blends. These low diffusivities were attributed to the occurrence of strong long‐range and short‐range interactions between the PET and the LCP in the B20 and B40 blends, and also to the perfection of the PET crystals in the B20 blend.  相似文献   
76.
The rheological and morphological properties of blends based on high‐density polyethylene (HDPE) and a commercial ethylene–octene copolymer (EOC) produced by metallocene technology were investigated. The rheological properties were evaluated in steady and dynamic shear experiments at 190°C in shear rates ranging from 90 s?1 to 1500 s?1 and frequency range between 10?1 rad/s and 102 rad/s, respectively. These blends presented a high level of homogeneity in the molten state and rheological behavior was generally intermediate to those of the pure components. Scanning electron microscopy (SEM) showed that the blends exhibit dispersed morphologies with EOC domains distributed homogeneously and with particle size inferior to 2 μm. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2240–2246, 2002  相似文献   
77.
In nature 2-deoxy-D-ribose-5-phosphate aldolase (DERA) catalyses the reversible formation of 2-deoxyribose 5-phosphate from D-glyceraldehyde 3-phosphate and acetaldehyde. In addition, this enzyme can use acetaldehyde as the sole substrate, resulting in a tandem aldol reaction, yielding 2,4,6-trideoxy-D-erythro-hexapyranose, which spontaneously cyclizes. This reaction is very useful for the synthesis of the side chain of statin-type drugs used to decrease cholesterol levels in blood. One of the main challenges in the use of DERA in industrial processes, where high substrate loads are needed to achieve the desired productivity, is its inactivation by high acetaldehyde concentration. In this work, the utility of different variants of Pectobacterium atrosepticum DERA (PaDERA) as whole cell biocatalysts to synthesize 2-deoxyribose 5-phosphate and 2,4,6-trideoxy-D-erythro-hexapyranose was analysed. Under optimized conditions, E. coli BL21 (PaDERA C-His AA C49M) whole cells yields 99 % of both products. Furthermore, this enzyme is able to tolerate 500 mM acetaldehyde in a whole-cell experiment which makes it suitable for industrial applications.  相似文献   
78.
MCM‐41 nanoparticles were used for preparing nanocomposites through the in situ polymerization of propylene. The performance of the catalytic system and the final properties of the materials obtained are highly dependent on the methodology used for impregnation of the catalyst onto the support particles, and therefore an optimization study for the impregnation methodology of the catalyst (Me2Si(Ind)2ZrCl2) was carried out. Two different methodologies were used; the results in terms of catalytic activity and polymer molecular masses indicated that the most promising one involved the pre‐activation of the catalyst with the cocatalyst, methylaluminoxane, followed by impregnation onto the MCM‐41 nanoparticles. Thus, an optimized route for the preparation of polypropylene nanocomposites achieving significant improvements in catalyst activity was developed. The nanocomposite materials were characterized by GPC, TGA and DSC. The dispersion state and the size of the nanoparticles incorporated in the polypropylene matrix were investigated by transmission electron microcopy. Additionally, this methodology allows simultaneous control of the desired amount of support and the concentration of catalyst to be used in the in situ polymerization. © 2015 Society of Chemical Industry  相似文献   
79.
Polyphenols of olive oil show autoprotective, sensory, and nutritional-therapeutic effects. Two new phenolic compounds have been isolated from virgin olive oils by preparative high-performance liquid chromatography and their structures established on the basis of their mass spectra and nuclear magnetic resonance spectral data. The compounds identified are the lignans pinoresinol and 1-acetoxypinoresinol. Both have been found in all the commercial virgin olive oils analyzed. Pinoresinol concentration was rather similar in all the oils. In contrast, 1-acetoxypinoresinol concentration was higher in oils of the Arbequina and Empeltre cultivars than in Picual or Picudo cultivars. Pinoresinol and 1-acetoxypinoresinol may represent the major phenolic compounds in some Arbequina and Empeltre oils. Lignans possess biological and pharmacological properties and, therefore, the two new compounds identified in olive oils may contribute to the reported beneficial effects which are attributed to polyphenols on human health of a diet rich in olive oil.  相似文献   
80.
A series of thermoplastic elastomers (TPEs) were prepared from a binary blend of ethylene propylene diene rubber (EPDM) and isotactic polypropylene (iPP) using different types of phase modifiers. The influence of sulphonated EPDM, maleated EPDM, styrene‐ethylene‐co‐butylene‐styrene block copolymer, maleated PP, and acrylated PP as phase modifiers showed improved physico‐mechanical properties (like maximum stress, elongation at break, moduli, and tension set). Scanning electron and atomic force microscopy studies revealed better morphologies obtained with these phase modified EPDM‐iPP blends. The dependence of the phase modifier type and concentration was optimized with respect to the improvement in physical properties and morphology of the blends. Physical properties, dynamic mechanical properties, and morphology of these blends were explained with the help of interaction parameter, melt viscosity, and crystallinity of the blends. Theoretical modeling showed that Kerner, Ishai‐Cohen, and Paul models predicted the right morphology–property correlation for the prepared TPEs. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号