首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   187篇
  免费   13篇
电工技术   2篇
化学工业   95篇
金属工艺   1篇
机械仪表   2篇
建筑科学   6篇
能源动力   2篇
轻工业   34篇
水利工程   2篇
石油天然气   1篇
无线电   9篇
一般工业技术   20篇
冶金工业   5篇
原子能技术   1篇
自动化技术   20篇
  2023年   4篇
  2022年   23篇
  2021年   37篇
  2020年   10篇
  2019年   4篇
  2018年   5篇
  2017年   9篇
  2016年   6篇
  2015年   8篇
  2014年   6篇
  2013年   11篇
  2012年   14篇
  2011年   5篇
  2010年   8篇
  2009年   7篇
  2008年   10篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1990年   1篇
  1988年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有200条查询结果,搜索用时 78 毫秒
21.
In this work, both light‐shaping and image magnification features are integrated into a single lens element using a moldless procedure that takes advantage of the physical and optical properties of mesoporous silicon (PSi) photonic crystal nanostructures. Casting of a liquid poly(dimethylsiloxane) pre‐polymer solution onto a PSi film generates a droplet with a contact angle that is readily controlled by the silicon nanostructure, and adhesion of the cured polymer to the PSi photonic crystal allows preparation of lightweight (10 mg) freestanding lenses (4.7 mm focal length) with an embedded optical component (e.g., optical rugate filter, resonant cavity, and distributed Bragg reflector). The fabrication process shows excellent reliability (yield 95%) and low cost and the lens is expected to have implications in a wide range of applications. As a proof‐of‐concept, using a single monolithic lens/filter element it is demonstrated: fluorescence imaging of isolated human cancer cells with rejection of the blue excitation light, through a lens that is self‐adhered to a commercial smartphone; shaping of the emission spectrum of a white light emitting diode to tune the color from red through blue; and selection of a narrow wavelength band (bandwidth 5 nm) from a fluorescent molecular probe.  相似文献   
22.

Irrigated agriculture plays a vital role for the socio-economic development of the Mediterranean area, although it has significant impacts on both water and energy resources. Therefore, in a context in which water resources are also experiencing increasing pressures, there is an urgent need for supporting their sustainable management. This may be an extremely challenging task, especially at the local scale, due to the several interconnected dynamics affecting the state of a complex irrigation system. In fact, multiple actors are involved in decision-making processes, and the use of natural resources (and their mutual interactions) strongly depends on their behaviors, which affect the system as a whole. In this context, the present study proposes an integrated methodology, based on the Water Energy Food Nexus (WEFN), specifically focused on the sustainable management of water resources for irrigation. Firstly, a model based on Causal Loop Diagrams (CLD) is developed in order to get a deep insight into the key dynamics behind a complex irrigation system. Secondly, three indices based on the “footprint” concept are identified, in order to synthesize such dynamics. The integration of these two approaches support investigating the whole system and, particularly, understanding the influence of multiple decisional actors on it, as well as the role of a set of key drivers and constraints. This might also allow drawing some relevant conclusions, useful for supporting effective decisions oriented to a sustainable water resources management. Specific reference is made to a case study, the Capitanata irrigation system, located in the Southern Italy.

  相似文献   
23.
24.
25.
Endometrial cancer (EC) is a deleterious condition which strongly affects a woman’s quality of life. Although aggressive interventions should be considered to treat high-grade EC, a conservative approach should be taken into consideration for women wishing to conceive. In this scenario, we present an overview about the EC fertility-sparing approach state of art. Type I EC at low stage is the only histological type which can be addressed with a fertility-sparing approach. Moreover, no myometrium and/or adnexal invasion should be seen, and lymph-vascular space should not be involved. Regarding the pharmaceutical target, progestins, in particular medroxyprogesterone acetate (MPA) or megestrol acetate (MA), are the most employed agent in conservative treatment of early-stage EC. The metformin usage and hysteroscopic assessment is still under debate, despite promising results. Particularly strict and imperious attention should be given to the follow-up and psychological wellbeing of women, especially because of the double detrimental impairment: both EC and EC-related infertility consequences.  相似文献   
26.
A detailed stratigraphic investigation of the intercalation mechanism when graphite electrodes are immersed inside diluted perchloric(HClO4)and sulfuric(H2SO4)electrolytes is obtained by comparing results when graphite crystals are simply immersed in the same acid solutions.By combining time-of-flight secondary ion mass spectrometry(ToF-SIMS)and in-situ atomic force microscopy(AFM),we provide a picture of the chemical species involved in the intercalation reaction.The depth intensity profile of the ion signals along the electrode crystal clearly shows a more complex mechanism for the intercalation process,where the local morphology of the basal plane plays a crucial role.Solvated anions are mostly located within the first tens of nanometers of graphite,but electrolytes also diffuse inside the buried layers for hundreds of nanometers,the latter process is also aided by the presence of mesoscopic crystal defects.Residual material from the electrolyte solution was found localized in well-defined circular spots,which represent preferential interaction areas.Interestingly,blister-like micro-structures similar to those observed on the highly oriented pyrolytic graphite(HOPG)surface were found in the buried layers,confirming the equivalence of the chemical condition on the graphite surface and in the underneath layers.  相似文献   
27.
Peripheral artery occlusive disease is an emerging cardiovascular disease characterized by the blockage of blood vessels in the limbs and is associated with dysfunction, gangrene, amputation, and a high mortality risk. Possible treatments involve by-pass surgery using autologous vessel grafts, because of the lack of suitable synthetic small-diameter vascular prosthesis. One to five percent of patients experience vascular graft infection, with a high risk of haemorrhage, spreading of the infection, amputation and even death. In this work, an infection-proof vascular graft prototype was designed and manufactured by electrospinning 12.5% w/v poly-L-lactic-co-glycolic acid solution in 75% v/v dichloromethane, 23.8% v/v dimethylformamide and 1.2% v/v water, loaded with 0.2% w/wPLGA. Polymer and tobramycin concentrations were selected after viscosity and surface tension and after HPLC-UV encapsulation efficiency (EE%) evaluation, respectively. The final drug-loaded prototype had an EE% of 95.58% ± 3.14%, with smooth fibres in the nanometer range and good porosity; graft wall thickness was 291 ± 20.82 μm and its internal diameter was 2.61 ± 0.05 mm. The graft’s antimicrobic activity evaluation through time-kill assays demonstrated a significant and strong antibacterial activity over 5 days against Staphylococcus aureus and Escherichia coli. An indirect cell viability assay on Normal Human Dermal Fibroblasts (NHDF) confirmed the cytocompatibility of the grafts.  相似文献   
28.
The capillary extrusion flow properties of novel engineering thermoplastic phenolphthalein poly(ether-ether-sulphone) (PES-C) have been investigated using capillary rheometer. The dependence of viscosity on the wall shear rate and temperatures were obtained. The flow activation energy was found to decrease with shear rate but to be constant with shear stress. The entrance effect was calculated and from which the extensional behavior was estimated using Cogswell's method. From the extrudate swell ratio the principal normal stress was evaluated and a temperature-independent correlation was observed when they were plotted against shear stress. The melt fracture phenomena were checked and discussed also. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:951–958, 1997  相似文献   
29.
Concerns with the environmental and health risk of widely distributed, commonly used nanoparticles are increasing. Nanosize titanium dioxide (TiO2) is used in air and water remediation and in numerous products designed for direct human use and consumption. Its effectiveness in deactivating pollutants and killing microorganisms relates to photoactivation and the resulting free radical activity. This property, coupled with its multiple potential exposure routes, indicates that nanosize TiO2 could pose a risk to biological targets that are sensitive to oxidative stress damage (e.g., brain). In this study, brain microglia (BV2) were exposed to a physicochemically characterized (i.e., dispersion stability, particle size distribution, and zeta potential) nanomaterial, Degussa P25, and cellular expressions of reactive oxygen species were measured with fluorescent probes. P25's zeta potentials, measured in cell culture media and physiological buffer were -11.6 +/- 1.2 mV and -9.25 +/- 0.73 mV, respectively. P25 aggregation was rapid in both media and buffer with the hydrodynamic diameter of stable P25 aggregates ranging from 826 nm to 2368 nm depending on the concentration. The biological response of BV2 microglia to noncytotoxic (2.5-120 ppm) concentrations of P25 was a rapid (<5 min) and sustained (120 min) release of reactive oxygen species. The time course of this release suggested that P25 not only stimulated the immediate "oxidative burst" response in microglia but also interfered with mitochondrial energy production. Transmission electron microscopy indicated that small groups of nanosized particles and micron-sized aggregates were engulfed bythe microglia and sequestered as intracytoplasmic aggregates after 6 and 18 h exposure to P25 (2.5 ppm). Cell viability was maintained at all test concentrations (2.5-120 ppm) over the 18 h exposure period. These data indicate that mouse microglia respond to Degussa P25 with cellular and morphological expressions of free radical formation.  相似文献   
30.
The C-terminal aminoacidic sequence from NPM1-mutated protein, absent in normal human tissues, may serve as a leukemia-specific antigen and can be considered an ideal target for NPM1-mutated acute myeloid leukemia (AML) immunotherapy. Different in silico instruments and in vitro/ex vivo immunological platforms have identified the most immunogenic epitopes from NPM1-mutated protein. Spontaneous development of endogenous NPM1-mutated-specific cytotoxic T cells has been observed in patients, potentially contributing to remission maintenance and prolonged survival. Genetically engineered T cells, namely CAR-T or TCR-transduced T cells, directed against NPM1-mutated peptides bound to HLA could prospectively represent a promising therapeutic approach. Although either adoptive or vaccine-based immunotherapies are unlikely to be highly effective in patients with full-blown leukemia, these strategies, potentially in combination with immune-checkpoint inhibitors, could be promising in maintaining remission or preemptively eradicating persistent measurable residual disease, mainly in patients ineligible for allogeneic hematopoietic stem cell transplant (HSCT). Alternatively, neoantigen-specific donor lymphocyte infusion derived from healthy donors and targeting NPM1-mutated protein to selectively elicit graft-versus-leukemia effect may represent an attractive option in subjects experiencing post-HSCT relapse. Future studies are warranted to further investigate dynamics of NPM1-mutated-specific immunity and explore whether novel individualized immunotherapies may have potential clinical utility in NPM1-mutated AML patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号