首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1110篇
  免费   38篇
  国内免费   2篇
电工技术   33篇
综合类   3篇
化学工业   239篇
金属工艺   27篇
机械仪表   27篇
建筑科学   24篇
能源动力   32篇
轻工业   58篇
无线电   89篇
一般工业技术   206篇
冶金工业   318篇
原子能技术   26篇
自动化技术   68篇
  2022年   8篇
  2021年   10篇
  2020年   7篇
  2019年   7篇
  2018年   16篇
  2017年   11篇
  2016年   13篇
  2015年   15篇
  2014年   22篇
  2013年   55篇
  2012年   26篇
  2011年   34篇
  2010年   33篇
  2009年   40篇
  2008年   38篇
  2007年   24篇
  2006年   24篇
  2005年   32篇
  2004年   23篇
  2003年   23篇
  2002年   25篇
  2001年   23篇
  2000年   26篇
  1999年   37篇
  1998年   133篇
  1997年   75篇
  1996年   41篇
  1995年   36篇
  1994年   31篇
  1993年   36篇
  1992年   19篇
  1991年   15篇
  1990年   14篇
  1989年   10篇
  1988年   10篇
  1987年   11篇
  1986年   7篇
  1985年   15篇
  1984年   9篇
  1983年   10篇
  1982年   20篇
  1981年   18篇
  1980年   8篇
  1979年   8篇
  1978年   6篇
  1977年   9篇
  1976年   17篇
  1975年   3篇
  1973年   3篇
  1972年   7篇
排序方式: 共有1150条查询结果,搜索用时 15 毫秒
21.
Multiwalled carbon nanotube (MWCNT)‐filled polycarbonate (PC)/styrene–acrylonitrile (SAN) blends with a wide range of blend compositions were prepared by melt mixing in a rotational rheometer, and the effect of SAN on the electrical properties of the PC/MWCNT composites was studied. The structure/electrical property relationship was investigated and explained by a combination of MWCNT localization and blend morphology. Transmission electron micrographs showed selective localization of MWCNTs in the PC phase, regardless of the blend morphology. When the SAN concentration was 10–40 wt %, which corresponded to sea‐island (10–30 wt %) and cocontinuous (40 wt %) blend morphologies (PC was continuous in both structures), the electrical resistivity decreased with increases in the SAN content. The concept of an effective volume concentration of MWCNTs was used to explain this effect. When the SAN concentration was 70 wt % or higher, the electrical resistivity was very high because MWCNTs were confined in the isolated PC particles. In addition, SAN was replaced by other polymers [polystyrene, methyl methacrylate/styrene, and poly(methyl methacrylate)]; these yielded similar blend morphologies and MWCNT localization and showed the generality of the concept of effective concentration in explaining a decrease in the electrical resistivity upon the addition of a second polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   
22.
A protocol for the analysis of the positional distribution of fatty acids (FA) in solid triacylglycerols (TAG) was developed using sn-1(3) selective alcoholysis catalyzed by immobilized Candida antarctica lipase B (CALB). One part by weight of solid fat and ten parts by weight of ethanol (99.5 %) were warmed to liquefy the fat. After adding 0.44 parts by weight of CALB, the mixture was shaken at 50 °C for 10 min then at 30 °C for 2.8 h. The recovery of 2-MAG after the 3-h transesterification reaction was ca. 85 % of the maximum theoretical yield (33 mol%), with the loss of 15 % attributable to the acyl migration from sn-2 to sn-1(3). The recovery was similar to that of the solvent-free alcoholysis of structured lipids, 1,3-dipalmitoyl, 2-oleoyl glycerol and 1,3-dioleoyl, 2-palmitoyl glycerol, conducted at 30 °C for 3 h. In contrast, the acyl migration from sn-1(3) to sn-2 was hardly observed. Because the detected acyl migration was only in the direction of sn-2 to sn-1(3), and not vice versa, it is proposed to determine the FA composition of the sn-2 position of TAG by the gas chromatographic analysis of 2-MAG fraction recovered from the enzymatic reaction mixture, and the FA composition of sn-1(3) position by a mass balance using the FA composition of TAG and of the sn-2 position as inputs. The procedure was successfully applied to palm oil and shea butter, and docosahexaenoic acid (DHA)-rich single cell oil from Aurantiochytrium sp. KH105 for the first time.  相似文献   
23.
Direct aminations of allylic alcohols, benzylic alcohols, and benzhydrols with electron‐withdrawing (F, Br, I, NO2, or CN) substituents were efficiently catalyzed by aluminum triflate [Al(OTf)3] to afford the corresponding biarylamines in high yield, and the dibromo‐substituted product was further transformed into letrozole.  相似文献   
24.
The thermally initiated emulsion copolymerization of styrene (ST) and methyl methacrylate (MMA) was carried out in the absence of conventional initiators. The hydroperoxide (HPO) concentration in the monomers, sodium dodecyl sulfate (SDS), deionized water, and the formulation of those for emulsion copolymerization were measured. The HPO concentration in ST and MMA increased with the storage time, and were considered to be the major sources of HPO. The thermal decomposition of hydroperoxide in monomers, the thermal initiation of ST by Mayo mechanism, and the complex formation between SDS and the monomers were proposed to be three main sources of the radical generation. It was confirmed that new polymer particles were generated throughout the polymerization process, and consequently resulted in a broader distribution of polymer particle size, compared with that for conventional emulsion polymerization. Approximately 80 wt % of monomer conversion was obtained in the presence of SDS at 373 K in 24 h. The initiation rate of the 30 wt % monomer charge was faster than those of 10 wt % and 20 wt % monomer charge. The latex instability at higher solid content was improved by adding electrolyte to promote the electrostatic repulsion force between the polymer particles. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 455–467, 2002; DOI 10.1002/app.2343  相似文献   
25.
An almost fully saponified atactic poly(vinyl alcohol) and an atactic poly(vinyl alcohol‐block‐vinyl acetate) of which degree of saponification is 89 mol % were blended by a solution casting method. The phase structure of the blend film was analyzed by optical microscopy, 13C‐NMR, and differential scanning calorimetry. The most remarkable structure of the blend was composed of cylindrical domains penetrating the film. The swelling behavior of the blend films was also investigated in the dimethylsulfoxide and water mixed solvents to find differences in solubility and diffusion behavior between the matrix and the domain. The cylindrical domains could be selectively dissolved away in water and the film became porous. We tried to change the size of the cylindrical domain with various film preparation conditions. This aimed to turn the film into the useful filter membrane. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1807–1815, 2002  相似文献   
26.
Melt viscosity and flow birefringence of bisphenol A-type polycarbonate were measured and analyzed by the application of rubber-like photoelastic theory. The melt viscosity in the Newtonian flow region increased with the molecular weight to the power of 3.4. In polycarbonate, the shear stress of the Newtonian flow region was to 106 dyn/cm2, whereas in PMMA it was at most 3 = 105 dyn/cm2. The flow birefringence δn has a linear relation with shear stress S, that is δn = 5.7 × 10?10 S. The principal polarization difference of flow unit α1 – α2 was 1.62 × 10?23 cm3, which was obtained by the application of the rubber-like elastic theory. In PMMA, it was 3.9 = 10?25 cm3; about 1/40 of that was polycarbonate. The anisotropy of polarizability of the flow unit of polycarbonate was also about 40 times larger than that of PMMA. So the anisotropy reflected the large flow birefringence of the polycarbonate.  相似文献   
27.
In this study, we investigated the effects of physical aging on the surface and gas‐transport properties of highly gas permeable poly(1‐trimethylsilyl‐1‐propyne) membranes irradiated with vacuum ultraviolet (VUV) radiation. VUV excimer lamp irradiation was performed on one side of the membrane for 6 or 60 min. The gas permeabilities for carbon dioxide (CO2) and nitrogen (N2) were determined through a volumetric measurement method at 23 °C. The gas permeabilities for CO2 and N2 increased temporarily at 7 days after 6 and 60 min of VUV irradiation of the membranes. The change in the gas permeability for N2 was more remarkable than that for CO2. These changes were related to the C?O or SiOx ratio. The C?O ratio was related to the gas permeability of the membranes VUV‐irradiated for 6 min, whereas the SiOx ratio was related to the gas permeability of the membranes VUV‐irradiated for 60 min. These changes affected the gas selectivities of the membranes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45973.  相似文献   
28.
Classicalparticle morphologies, core‐shell, hemisphere, sandwich, and so on, were all reproducible by starting from ca. 10‐μm uniform droplets composed of monomers, initiator, solvents, and polymer, and polymerizing them by subsequent suspension polymerization. SPG (Shirasu porous glass) membrane was employed to form uniform size droplets having the coefficient of variation (CV) around 10%. Styrene (ST) and acrylic monomers were used as monomers, and their polymers were dissolved in the droplets to investigate the development of phase separation. When hydrophilic methyl methacrylate (MMA) was polymerized in the droplets with a mixed solvent consisting of hydrophilic hexanol (HA) and hydrophobic benzene and hexadecane (HD), the resulting morphology shifted from hemisphere to sandwich and eventually to PMMA/solvent core‐shell with increasing hydrophilicity of the mixed solvent. The sandwich was converted to the core‐shell after several weeks elapsed. As styrene was added to MMA, the morphology shifted from hemisphere core/solvent shell to raspberry core/solvent shell as the fraction of ST increased. The domain of the mixed solvent in the raspberry core was reduced with increasing the hydrophilicity of the mixed solvent. All these morphologies were eventually converted to the copolymer core/solvent shell. When a mixed monomer of styrene and MMA dissolving polystyrene (PS) was polymerized, the resulting morphology shifted from salami to core‐shell with increasing the MMA fraction in the comonomer. The salami particles were then swollen with toluene, and after the swelling, toluene was removed under the different temperature and pressure. The final particle morphology converted to the core‐shell with a milder rate of toluene removal which was predicted from the thermodynamic model. When styrene and cyclohexyl acrylate (CHA), a pair with widely different reactivity ratios, were copolymerized, salami morphologies, with tiny CHA‐rich domains dispersed in the matrix, were obtained even at a higher fraction of CHA in comonomer. Effects of glass transition temperature of the polymers, molecular weight, and the composition of copolymers were taken in consideration whenever the final morphologies were discussed. By these experiments, the authors tried to demonstrate an advantage of using large uniform spheres for the particle morphology studies. SPG emulsification technique was a potential tool because of its free formulation of the droplets, and the subsequent polymerization could undergo without the breakup or coalescence of the droplets. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2200–2220, 2001  相似文献   
29.
Surface modification of poly(lactic acid) (PLA) film is performed via 172 nm excimer lamp irradiation. Effects on water vapor solubility and physical properties via vacuum ultraviolet (VUV) irradiation are studied systematically. After VUV irradiation, water vapor solubility increases approximately 11–43% in the low‐pressure region and approximately 20–38% in the high‐pressure region as surface hydrophilicity increased. The increase is attributed to hydrogen bonding with the carboxyl groups because of VUV radiation. The modified layer is significantly swelling after water vapor sorption. The hydrophilic layer forms a thickness of 2–3 μm from the irradiated surface via VUV radiation, but no changes are observed inside the irradiated film. Therefore, PLA film solubility after irradiation is enhanced by hydrophilicity and the swelling effect of the surface. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42200.  相似文献   
30.
Young's modulus and Poisson's ratio of SiC ceramics at temperatures >1400°C were obtained using a laser ultrasonics method that included a Fabry-Pérot interferometer (LUFP). At temperatures <1000°C, Young's modulus and Poisson's ratio measured using the LUFP method agreed well with those measured using standard contact methods, such as the resonance method and the ultrasonic pulse method. These results showed that the LUFP method is a powerful tool for measuring high-temperature elastic properties of advanced ceramics in a noncontact manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号