首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   37篇
  国内免费   3篇
综合类   3篇
化学工业   153篇
金属工艺   15篇
机械仪表   60篇
建筑科学   16篇
能源动力   17篇
轻工业   56篇
水利工程   5篇
无线电   43篇
一般工业技术   172篇
冶金工业   63篇
原子能技术   4篇
自动化技术   76篇
  2024年   2篇
  2023年   8篇
  2022年   49篇
  2021年   40篇
  2020年   22篇
  2019年   45篇
  2018年   34篇
  2017年   26篇
  2016年   24篇
  2015年   15篇
  2014年   27篇
  2013年   41篇
  2012年   26篇
  2011年   27篇
  2010年   22篇
  2009年   17篇
  2008年   18篇
  2007年   16篇
  2006年   14篇
  2005年   6篇
  2004年   17篇
  2003年   9篇
  2002年   16篇
  2001年   7篇
  2000年   16篇
  1999年   11篇
  1998年   16篇
  1997年   7篇
  1996年   10篇
  1995年   10篇
  1994年   5篇
  1993年   6篇
  1992年   10篇
  1991年   7篇
  1990年   6篇
  1989年   4篇
  1987年   5篇
  1986年   3篇
  1983年   3篇
  1982年   1篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   5篇
  1975年   5篇
  1974年   2篇
  1971年   1篇
  1968年   1篇
排序方式: 共有683条查询结果,搜索用时 0 毫秒
31.
The synthesis of solid solutions of AlN–SiC was investigated through the combustion reaction between Si3N4, aluminum, and carbon powders and nitrogen gas at pressures ranging from 0.1 to 6.0 MPa. The combustion reaction was initiated locally and then the wave front propagated spontaneously, passing through the cylindrical bed containing the loose powder. In the presence of Si3N4 as a reactant, it was feasible to synthesize solid solutions at an ambient pressure (0.1 MPa). The relationship between nitrogen pressure and full-width at half-maximum of the (110) peak of the product showed that lower pressures produced more-homogeneous solid solutions. Some aspects of formation of the AlN–SiC solid solutions were discussed with special emphasis on the influence of nitrogen pressure and reactant stoichiometry.  相似文献   
32.
Abstract

A novel adsorbent Zr(IV)-immobilized resin was prepared to remove fluoride ions from tap water and industrial wastewater. In order to enhance both the kinetics and efficiency, large pathways were formed in the resin for fluoride ion adsorption and the Zr(IV)-phosphate complexes were immobilized on the polymer surface by surface-template polymerization. The Zr(IV)-immobilized resin had a fluoride adsorption capacity of 0.30 mmol/g. The morphology of the Zr(IV)-immobilized resin was evaluated by measuring the specific surface area, pore volume, and pore size distribution. The resin possessed large amounts of large macropores with diameters around 300 nm. The molecular structure at the fluoride adsorption sites was investigated by measuring the amounts of phosphorus, zirconium, and fluoride ion in the resin, and developing a model complex using computational chemistry. On the polymer surface, a fluoride ion/Zr(IV)/dioleyl phosphoric acid complex with an ideal F:Zr:P mole ratio of 3:1:3 could be formed.  相似文献   
33.
In this study effects of the preparation method on the characteristic properties and CO oxidation activities of Ag2O/Co3O4 catalysts were investigated. Catalysts were prepared by two different methods: sol gel and co-precipitation. N2 physisorption measurements, X-ray diffraction, and scanning electron microscopy measurements were used to characterize the catalysts. CO oxidation activity tests were carried out under 1% CO, 21% O2, and the remainder He feed condition between 20° and 200°C. According to the N2 physisorption measurements, catalysts prepared by the co-precipitation method have a higher surface area than the catalysts prepared by the sol-gel method. Co3O4 and AgCoO2 phases were obtained from catalysts prepared by both techniques. In addition to these phases, metallic silver peaks were obtained by increasing calcination temperature. SEM micrographs of the catalysts showed that catalysts have uniform particles. Increasing the calcination temperature caused the formation of different-sized agglomerates and an increase in the gaps between agglomerates. The best activity was obtained from the Ag2 O/Co3 O4 catalyst calcined at 200°C and prepared by the co-precipitation method. This catalyst gave 50% CO conversion at 106°C. The other two catalysts gave 100% CO conversion at a higher temperature of 200°C.  相似文献   
34.
Chronic periodontitis poses long-term challenges in dentistry, requiring the development of innovative dental composites with biocompatibility, bone regeneration, and antibacterial properties. This study focuses on synthesis of novel injectable thermoresponsive hydrogels composed of chitosan, sodium bicarbonate, bioactive glass (20 and 40% w/w), and acetanilide drug (0.3 and 0.6% w/w). These hydrogels exhibit a sol–gel transition at 37°C, addressing periodontal challenges with reduced gelation time. The smooth flow characteristic was evaluated through 17-22 gauge syringe needles at low temperature. Rheological studies demonstrated pseudoplastic behavior, with viscosity decreasing as shear rate increases. Fourier transform infrared and x-ray diffraction analysis confirmed the bioactivity of hydrogels, forming a bone-like apatite layer in simulated body fluid. The drug-loaded hydrogels demonstrated promising in vitro antibacterial properties against dental pathogens, specifically Staphylococcus aureus and Pseudomonas aeruginosa. Drug dissolution analysis revealed relatively high release rate at 37°C, highlighting its role in rapidly eliminating bacterial colonies at the target site, while the subsequent sustained release contributes to the prevention of infection recurrence. Finally, biocompatibility was assessed with fibroblast, where the cells were observed anchoring into the polymeric chains of hydrogel through extended filopodia.  相似文献   
35.
The present study concentrated on the use of an agro-waste biodegradable sorghum biomass in its simple and modified forms for the binding of Cr (III) ions. A relatively new method of modification was adopted using urea under microwave irradiation. FTIR analysis showed the presence of oxygen and nitrogen bearing functional groups in unmodified (UMS) and modified (MS) sorghum biomass. The appearance of new bands and shifts in the peaks confirmed the modification. The influence of different process parameters such as the adsorbent dose, solution pH, contact time, agitation speed and initial metal ion concentration was studied thoroughly to evaluate optimum conditions for adsorption. Maximum adsorption for Cr (III) ions occurred at pH 5.0–6.0 using UMS and MS. Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models in a non-linear fashion were used to explain the phenomenon. Maximum adsorption capacity was 7.03 and 16.36 mg of Cr (III) per gram of UMS and MS, respectively. Adsorption mechanism was explored by pseudo-first- and pseudo-second-order kinetic models, and it was found that the process followed pseudo-second-order kinetics. Thermodynamic study indicated the process favorability. The study concluded that urea modification under microwave irradiation produces a non-toxic and more effective adsorbent for Cr (III) remediation by inducing new nitrogen bearing functional groups to sorghum biomass.  相似文献   
36.
Continuous production of palm methyl esters   总被引:4,自引:0,他引:4  
A system for continuous transesterification of palm oil was developed using a continuous stirred-tank reactor (CSTR) and pumps for continuous delivery of oil and catalyst and for continuous removal of product. Potassium hydroxide was used as the catalyst, the methanol-to-oil molar ratio was 6∶1, and reaction temperature was 60°C. The yield of methyl esters increased from 58.8% of theoretical yield at a residence time of 40 min to 97.3% at a residence time of 60 min. However, higher residence times decreased the production rate. During long-term continuous operation, the CSTR displayed steady state conditions in terms of product profile and methyl ester concentration. This process has good potential in the manufacture of biodiesel.  相似文献   
37.
The effect of AlN on the structure formation of SiC was investigated. SiC was synthesized in the presence of AlN under vacuum at 1500°C, and the result was cubic SiC. The synthesis of AlN–SiC composites through the reaction Si3N4+ 4Al + 3C = 3SiC + 4AlN was also investigated and compared with synthesis via field-activated self-propagating combustion (FASHS). Reactants were heated in a vacuum furnace at temperatures ranging from 1130° to 1650°C. Below 1650°C, the reaction is not complete and at this temperature the product phases are AlN and cubic SiC. At 1650°C, the product contained an outer layer which contained β-SiC only and an inner region which contained AlN and cubic SiC. 2H-SiC and AlN composites synthesized via field-activated self-propagating combustion were annealed at 1700°C under vacuum. The AlN dissociated and evaporated and the 2H-SiC transformed to the cubic β phase. Reasons for the differences in products of furnace heating and FASHS are discussed.  相似文献   
38.
The effect of reactant particle size on the kinetics of wave propagation in the thermite system Nb2O5+ Al2Zr + nuAl2O3 (with alumina being a diluent) was investigated. Reactants in three size ranges were utilized: fine (1–3 µm), medium (<10 µm), and coarse (10–45 µm). Particle size had an effect on the mode and velocity of the self-propagating combustion wave. For fine particles, the combustion wave propagated in a steady-state mode for all values of dilutions investigated (0 ≤ nu ≤ 0.8). For medium particles with nu > 0.1 and for all coarse particles, wave propagation was in the spin mode. A significantly large difference between the calculated adiabatic combustion temperatures and the measured values was observed and is attributed to large heat losses arising from very wide reaction zones. For fine particles, the temperature dependence of the wave velocity showed a discontinuity at a temperature corresponding to the formation of the eutectic in the binary ZrO2-Al2O3. The velocity can be more than a factor of 3 higher at the same temperature, depending on the amount of the eutectic liquid. The dependence of the wave velocity on particle size ( r ) was found to have the form v is proportional to 1/ rm with 0.5 < m < 0.8. The upper limit approximates that of m = 1.0 for diffusion-controlled reaction kinetics, according to reported modeling studies. In all cases, regardless of the mode of wave propagation the reactions resulted in the desired products, Nb + ZrO2+ Al2O3 with a microstructure exhibiting the eutectic of the binary ZrO2-Al2O3.  相似文献   
39.
Cannabis use among pregnant women is increasing worldwide along with permissive sociocultural attitudes toward it. Prenatal cannabis exposure (PCE), however, is associated with adverse outcome among offspring, ranging from reduced birth weight to child psychopathology. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of PCE, exhibit extensive molecular, cellular, and synaptic changes in dopamine neurons of the ventral tegmental area (VTA), resulting in a susceptible mesolimbic dopamine system associated with a psychotic-like endophenotype. This phenotype only reveals itself upon a single exposure to THC in males but not females. Here, we characterized the impact of PCE on female behaviors and mesolimbic dopamine system function by combining in vivo single-unit extracellular recordings in anesthetized animals and ex vivo patch clamp recordings, along with neurochemical and behavioral analyses. We find that PCE female offspring do not show any spontaneous or THC-induced behavioral disease-relevant phenotypes. The THC-induced increase in dopamine levels in nucleus accumbens was reduced in PCE female offspring, even when VTA dopamine activity in vivo and ex vivo did not differ compared to control. These findings indicate that PCE impacts mesolimbic dopamine function and its related behavioral domains in a sex-dependent manner and warrant further investigations to decipher the mechanisms determining this sex-related protective effect from intrauterine THC exposure.  相似文献   
40.
Bioactive glasses (BGs) have been used for bone formation and bone repair processes in recent years. This study investigated the titanium substitution effect on 58S BGs (Ti-BGs) 60SiO2-(36 − X)CaO-4P2O5-XTiO2 (X = 0, 3, and 5 mol.%) prepared by the sol-gel technique, and the main goal was to find the optimum amount of titanium in Ti-BGs. Synthesized BGs, which were investigated after immersion in simulated body fluid (SBF), were tested by X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy. Moreover alkaline phosphate (ALP) activity, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and antibacterial studies were employed to investigate the biological properties of Ti-BGs. According to the FTIR and XRD test results, hydroxyapatite (HA) formation on Ti-BGs surfaces was confirmed. Meanwhile, the presence of 5 mol.% compared to 3 mol.% increased the HA grain distribution and their size on the Ti-BGs surface. Additionally, MTT and ALP results confirmed that the optimal amount of titanium substitution in BG was 5 mol.%. Since 5 mol.% Ti incorporated BG (BG-5) had the highest biocompatibility level, antibacterial properties, maximum cell proliferation, and ALP activity among the synthesized Ti-BGs, it is presented as the best candidate for further in vivo investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号