The thermomechanical behavior of micro/nano-alumina (Al2O3) ceramics reinforced with 1-5 wt.% of acid-treated oil fly ash (OFA) was investigated. Composites were sintered using spark plasma sintering (SPS) technique at a temperature of 1400°C by applying a constant uniaxial pressure of 50 MPa. It was evaluated that the fracture toughness of micro- and nanosized composites improved in contrast with the monolithic alumina. Highest fracture toughness value of 4.85 MPam1/2 was measured for the nanosized composite reinforced with 5 wt.% OFA. The thermal conductivity of the composites (nano-/microsized) decreased with the increase in temperature. However, the addition of OFA (1-5 wt.%) in nanosized alumina enhanced the thermal conductivity at an evaluated temperature. Furthermore, a minimum thermal expansion value of 6.17 ppm*K−1 was measured for nanosized Al2O3/5 wt.% OFA composite. Microstructural characterization of Al2O3-OFA composites was done by x-ray diffraction and Raman spectroscopy. Oil fly ash particles were seen to be well dispersed within the alumina matrix. Moreover, the comparative analysis of the nano-/microsized Al2O3/OFA composites shows that the mechanical and thermal properties were improved in nanosized alumina composites. 相似文献
The sphericity and size of ammonium perchlorate (AP) particles significantly influence the properties of composite propellants. As the AP particles become more spherical, the accumulation coefficient increases, the viscosity during casting decreases, and the particle loading and burning rate increase. Hence, the production of micronized AP particles with an average size between 1 and 20 μm is important to increase the loading percentage of AP in the composite propellant. Here, the Taguchi experimental design was used to optimize the solvent-antisolvent crystallization (SAC) process for the preparation of micronized AP particles with higher sphericity. SAC parameters such as the type of antisolvent, the solvent-to-antisolvent ratio, the antisolvent temperature, the stirring speed, and the retention time were investigated at four levels. The type of antisolvent and the solvent-to-antisolvent ratio were found to mainly contribute to improving the sphericity and size of the AP particles, respectively. 相似文献
Canola is widely grown in the northern latitudes for its vegetable oil, generating large quantities of residual, low value canola flour used as animal feed. The common wood adhesive poly(diphenylmethylene diisocyanate) (pMDI) should react with the wide variety of functional groups in proteins. Therefore, it would seem that canola flour with added pMDI could be an effective adhesive. Two main questions are addressed in this study: How do the wood adhesive properties of canola flour compare to the better-studied soy flour? How well do proteins, which contain an abundance of functional groups, cure with the very reactive pMDI? These questions were addressed using the small-scale adhesive strength test ASTM D-7998, with various adhesive formulations and bonding conditions for canola flour plus pMDI compared to soy adhesives. The more challenging wet cohesive bond strength was emphasized because the dry strengths were usually very good. Generally, soy adhesives were better than canola ones, as was the polyamidoamine-epichlorohydrin cross-linker compared to pMDI, but these generalizations can be altered by the conditions selected. Three-ply plywood tests supported the small-scale test results. 相似文献
Dynamically crosslinked thermoplastic elastomer nanocomposites were synthesized as modifier for the bitumen binder-based asphalts. Linear low-density polyethylene (LLDPE) and styrene-butadiene rubber (SBR), with the ratio of 80/20, bitumen, and organically modified clay (OC) were all melt mixed in the presence of the sulfur curing system. The proposed mixing was carried out in an internal mixer at 160 °C with a rotor speed of 120 rpm. To enhance the molecular interactions between the polymer phases and the clay silicate layers, maleic anhydride-grafted LLDPE (PE-g-MA) with the maleiation degree of 50% was also incorporated into the mixture. Observation of the composite samples, using the scanning electron microscopy (SEM), revealed the matrix dispersed type of morphology for all dynamically vulcanized samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) examinations evidenced the exfoliation of the clay silicate layers with good dispersion. Rheomechanical spectrometry (RMS) was performed on the prepared nanocomposites. All dynamically vulcanized nanocomposites comprising 2.5% of OC exhibited shear-thinning behavior and non-terminal characteristics with a low frequency range. These indicate the formation of three-dimensional physical networks by the clay nanolayers throughout the LLDPE matrix. The presence of the bitumen in the composition of the prepared nanocomposites improved the flowability of the samples. This is a promising feature of the prepared nanocomposites to be used as an elastic and resistant modifier in the composition of the bitumen-based asphalts.
Interaction of SOx (x?=?2,3) molecules on active sites of dianiline (as a model for polyaniline, denoted here as 2PANI) was studied using density functional theory at the BLYP-D/6-31+G(d) level of theory. Natural population analysis was used to find out the charge distribution as well as the net transferred charge of SOx upon adsorption on 2PANI and the result has been compared with Mulliken charge analysis to evaluate the sensing ability of 2PANI. The computed density of states point to the remarkable orbital hybridization between SOx and 2PANI during the adsorption process. As a consequence, the results of UV–VIS confirm the sensing ability of 2PANI toward SO2 and SO3. Based on our results, it can be found that at proper configuration the SO2 and SO3 molecules can be adsorbed on 2PANI with adsorption energies (Eads) of ?18.2 and ?62.9?kJ/mol (BSSE), respectively. 相似文献
A comprehensive and facile method for the synthesis of new functionalized bis-heterocyclic compounds containing a thieno[2,3-b]thiophene motif is described. The hitherto unknown bis-pyrazolothieno[2,3-b]thiophene derivatives 2a-c, bis-pyridazin othieno[2,3-b]thiophene derivatives 4, bis-pyridinothieno[2,3-b]thiophene derivatives 6a,b, and to an analogous bis-pyridinothieno[2,3-b]thiophene nitrile derivatives 7 are obtained. Additionally, the novel bis-pyradazinonothieno[2,3-b]thiophene derivatives 9, and nicotinic acid derivatives 10, 11 are obtained via bis-dienamide 8. The structures of all newly synthesized compounds have been elucidated by (1)H, (13)C NMR, GCMS, and IR spectrometry. These compounds represent a new class of sulfur and Nitrogen containing heterocycles that should also be of interest as new materials. 相似文献
A micro-mesoporous ZSM-5/MCM-41 composite molecular sieve (ZM13) was synthesized and tested as an FCC catalyst additive to enhance the yield of propylene from catalytic cracking of vacuum gas oil (VGO). The catalytic performance of the additive was assessed using a commercial equilibrium USY FCC catalyst (E-Cat) in a fixed-bed micro-activity test unit (MAT) at 520?°C and various catalyst/oil ratios. MCM-41, ZSM-5 and two ZSM-5/MCM-41 composites were systematically characterized by complementary techniques such as XRD, BET, FTIR and SEM. The characterization results showed that the composites contained secondary building unit with different textural properties compared to pure ZSM-5 and MCM-41. MAT results showed that the VGO cracking activity of E-Cat did not decrease by using these additives. The highest propylene yield of 12.2 wt% was achieved over steamed ZSM-5/MCM-41 composite additive (ZM13) compared with 8.6 wt% over conventional ZSM-5 additive at similar gasoline yield penalty. The enhanced production of propylene over composite additive was attributed to its mesopores that suppressed secondary and hydrogen transfer reactions and offered easier transport and accessibility to active sites. Gasoline quality was improved by the use of all additives except MCM-41, as octane rating increased by 6?C12 numbers. 相似文献