首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1797篇
  免费   107篇
  国内免费   16篇
电工技术   52篇
综合类   8篇
化学工业   494篇
金属工艺   51篇
机械仪表   82篇
建筑科学   52篇
矿业工程   3篇
能源动力   96篇
轻工业   160篇
水利工程   38篇
石油天然气   21篇
武器工业   2篇
无线电   139篇
一般工业技术   318篇
冶金工业   74篇
原子能技术   17篇
自动化技术   313篇
  2024年   4篇
  2023年   56篇
  2022年   91篇
  2021年   135篇
  2020年   114篇
  2019年   134篇
  2018年   141篇
  2017年   118篇
  2016年   120篇
  2015年   82篇
  2014年   97篇
  2013年   164篇
  2012年   123篇
  2011年   100篇
  2010年   78篇
  2009年   84篇
  2008年   46篇
  2007年   41篇
  2006年   30篇
  2005年   11篇
  2004年   9篇
  2003年   11篇
  2002年   11篇
  2001年   2篇
  2000年   8篇
  1999年   12篇
  1998年   20篇
  1997年   12篇
  1996年   11篇
  1995年   9篇
  1994年   13篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1968年   1篇
排序方式: 共有1920条查询结果,搜索用时 15 毫秒
31.
Two key decisions in designing cellular manufacturing systems are cell formation and layout design problems. In the cell formation problem, machine groups and part families are determined while in the facility layout problem the location of each machine in each cell (intra-cell layout) and the location of each cell (inter-cell layout) are decided. Owing to the fact that there are interactions between two problems, cell formation and layout design problem must be tackled concurrently to design a productive manufacturing system. In this research, two problems are investigated concurrently. Some important and realistic factors such as inter-cell layout, intra-cell layout, operations sequence, part demands, batch size, number of cells, cell size, and variable process routings are incorporated in the problem. The problem is formulated as a mathematical model. Three different methods are described to solve the problem: multi-objective scatter search (MOSS), non-dominated genetic algorithm (NSGA-II), and the ε-constraint method. The methods are employed to solve nine problems generated and adopted from the literature. Sensitivity analysis is accomplished on the parameters of the problem to investigate the effects of them on objective function values. The results show that the proposed MOSS algorithm performs better than NSGA-II and produces better solutions in comparison to multi-stage approaches.  相似文献   
32.
Two-phase flow is a common phenomenon in the energy industry, where flow patterns significantly affect heat transfer and pressure drop in different systems. However, there is no unique or comparable flow map because of its dependency on dimensional parameters. Therefore, an analysis using dimensionless numbers makes the results comprehensive. To do so, a series of liquid–liquid flow experiments (1296 experiments) were conducted in a transparent pipe at the different velocities of the phases. The flow patterns were captured using a high-speed camera. The experiments were performed at eight different inclinations within the range of −20 to +20 degrees. Six flow patterns are observed at different inclinations; stratified flow with mixing at the interface (STMI), dispersion of water in oil (Dw/o), dispersion of oil in water (Do/w), dual continuous (DC), slug, and wavy stratified (WST), where the first five flow patterns are presented in the upward flow and the two last flow patterns disappear in some of the downward flow. The pattern of boundaries for each flow pattern in the upward flow shows dependency on inclination, while in the downward flow condition, a rather general format can be applied to most of the patterns. The analysis illustrates that gravity and buoyancy forces are the dominating forces in the system compared to other forces, such as viscous, inertia, and interfacial tension, which are due to the inclination of the pipe.  相似文献   
33.
High-entropy materials defy historical materials design paradigms by leveraging chemical disorder to kinetically stabilize novel crystalline solid solutions comprised of many end-members. Formulational diversity results in local crystal structures that are seldom found in conventional materials and can strongly influence macroscopic physical properties. Thermodynamically prescribed chemical flexibility provides a means to tune such properties. Additionally, kinetic metastability results in many possible atomic arrangements, including both solid-solution configurations and heterogeneous phase assemblies, depending on synthesis conditions. Local disorder induced by metastability, and extensive cation solubilities allowed by thermodynamics combine to give many high-entropy oxide systems utility as electrochemical, magnetic, thermal, dielectric, and optical materials. Though high-entropy materials research is maturing rapidly, much remains to be understood and many compositions still await discovery, exploration, and implementation.  相似文献   
34.
Atopic dermatitis (AD) is a common relapsing inflammatory skin disorder characterized by immune-mediated inflammation and epidermal barrier dysfunction. The pathogenesis of AD is multifactorial and has not been fully elucidated to date. This study aimed to evaluate whether serum IgG from adult AD patients could modulate the thymic maturation of IL-22-producing T cells and CLA+ T cells of non-atopic infants. Given that miRNAs regulate immune response genes, we evaluated whether miRNA expression is also altered in cultured thymocytes. Thymocytes were cultured with purified IgG from AD patients or control conditions (mock, Intravenous-IgG (IVIg), non-atopic IgG, or atopic non-AD IgG). Using flow cytometry analysis, we assessed the expression of CLA and intracellular levels of IL-4, IFN-γ, and IL-22 on double-positive T cells (DP T), CD4 T cells, or CD8 T cells. We also investigated the frequency of IgG isotypes and their direct interaction with the thymic T cells membrane. The miRNA profiles were evaluated by the Illumina small RNA-seq approach. MiRNA target gene prediction and enrichment analyses were performed using bioinformatics. Increased frequencies of IL-22 and CLA+ producing CD4+ T cells cultured with IgG of AD patients was seen in non-atopic infant thymocytes compared to all control conditions. No alterations were observed in the frequency of IgG isotypes among evaluated IgG pools. Evidence for a direct interaction between IgG and thymic DP T, CD4 T, and CD8 T cells is presented. The small RNA-seq analysis identified ten mature miRNAs that were modulated by AD IgG compared to mock condition (miR-181b-5p, hsa-miR-130b-3p, hsa-miR-26a-5p, hsa-miR-4497, has-miR-146a, hsa-let-7i-5p, hsa-miR-342-3p, has-miR-148a-3p, has-miR-92a and has-miR-4492). The prediction of the targetome of the seven dysregulated miRNAs between AD and mock control revealed 122 putative targets, and functional and pathway enrichment analyses were performed. Our results enhance our understanding of the mechanism by which IgG can collaborate in thymic T cells in the setting of infant AD.  相似文献   
35.
A series of NbO x /ZrO2 catalysts containing up to 2.67wt Nb (ca. 80 nominal surface coverage) was prepared by incipient wetness impregnation from niobium oxalate and oxalic acid solution. The structure of the catalysts was monitored by X-ray diffraction and Raman spectroscopy. The results indicated the presence of a surface Nb phase. No evidence for the formation of crystalline Nb2O5 species was found. The development of the acidity as a function of Nb loading was monitored by adsorption of a basic probe molecule followed by infrared spectroscopy. The results indicated the appearance of Brnsted acid sites for a threshold of Nb loading. The abundance of Brnsted acid sites correlated well with the isopropanol dehydration activity. The overall behavior was very similar to that reported earlier for the WO x /ZrO2 system.  相似文献   
36.
The problem of macrofouling has serious implications in the performance of desalination and power plants. Intake structures, screens, seawater piping systems and heat-exchanger tubes are the sites worst affected in the plants, causing an overall decline in plant efficiency at great economic cost. The last half century has witnessed significant advancements in the development ofmacrofouling control technologies. Materials of inherent antifouling properties are widely used in the construction sector. Control technologies available include antifouling paints and coatings, injection of biocides, marine bio-active compounds, materials of inherent antifouling properties, heat treatment, pulse-power devices, UV and nuclear radiation, scrubbing devices, biological control, etc. A literature search carried out during the last few years has yielded about 450 references. This paper presents, in a very concise manner, state-of-the- art macrofouling control technologies pertinent to desalination and power plants in the Kingdom. The paper also discusses the issues of biofouling control in the Al-Jubail plants based on the results of an on-line macrofouling experiment conducted in one of the turbine condensers of Al-Jubail phase-I MSF/power plants.  相似文献   
37.
Citric acid is one of the most widely used acids in industry, and its recovery from waste streams is critical. Emulsion liquid membrane (ELM) is one of the most effective recovery methods that has been investigated in recent years. Numerous transport phenomena parameters affect the efficiency of this process. From the process equipment design point of view, optimization based on overall cost is of great importance, and important equipment sizing decisions/constraints must be considered. A physics-based model for a full-scale simulation of ELM systems is very useful. This work is focused on developing and verifying such a model. A coupled particle/mixture simulation was carried out in this work, and the modelling results were fitted on the experimental data. The novelty of this modelling work is physics-based results based on the system's geometry and its effects on the mass transfer resistances. Since the model is physics-based, the model is capable of simulating similar systems with any geometry or experimental conditions.  相似文献   
38.
Over the last decades, renewable and clean energy sources are being rigorously adopted along with carbon capture technologies to tackle the increasing carbon dioxide (CO2) concentration level in the environment. CO2 capture is a quintessential option for tackling global warming issues. In this context, the present paper has reviewed the process intensification equipment called a rotating packed bed (RPB), which is highly industry applicable due to high gravity (HiGee) force. This facilitates strong mass transfer characteristics, a compact design, and low energy consumption. In this review, the current research scenario of RPBs using numerical, computational fluid dynamics (CFD), and mathematical modelling, along with different machine learning approaches in the CO2 capture process, has been reviewed. The different geometry designs, hydrodynamic characteristics, performance parameters, research methods, and their effects on CO2 removal efficiency have been discussed. Furthermore, the latest experimental studies are also summarized, especially in the absorption and adsorption domain. Finally, recommendations have been given to support the RPBs in different industrial and commercial applications of CO2 removal.  相似文献   
39.
Nanocrystalline and amorphous Ni–W coatings containing Al2O3 nanoparticles were electrodeposited from three different ammoniacal citrate baths by direct current (DC) method. The effects of nanoparticles on compositional, structural and morphological features of Ni–W coatings were investigated. The effects of bath chemical composition and current density on codeposition behavior of nanoparticles were also studied. Guglielmi model for particle deposition was applied to identify the kinetics of particle deposition. The presence of nanoparticles may affect on coating grain size, tungsten content and the rate of metal deposition. In addition, nanoparticles can result in more compact coatings with fewer defects. The extent of these effects depends on bath chemical composition and may be influenced by the synergistic effect of Ni on deposition of W. It was also found that the kinetics of particle deposition and the effect of current density on codeposition behavior of nanoparticles are highly dependent on bath chemical composition.  相似文献   
40.
The catalytic reductive amidation of an aldehyde (hexanal) with an amide (acetamide) is reported. Apart from the desired N‐hexylacetamide, the two isomeric unsaturated intermediates as well as hexanol are produced together with higher mass products that arise from aldol condensation and diamide coupling of the aldehyde. Screening of different catalyst precursor salts, ligands and reaction conditions led to the finding that the catalytic system based on the (cyclooctadiene)rhodium chloride dimer, [Rh(cod)Cl]2, in combination with the ligand xantphos and an acid co‐catalyst results in high selectivity for the desired product. Under optimized conditions nearly full conversion is reached with high selectivity to the desired N‐alkylamide and with a very high N ‐ alkylamide/alcohol ratio, while producing only small amounts of by‐products. The scope of the reaction has been investigated using different amides as well as aldehydes; the results show the general applicability of this novel reaction, but with electron‐withdrawing amides the selectivity to N‐alkylamide is lower. NMR studies showed that the nucleophilic addition of acetamide to hexanal is acid catalyzed, forming N‐(1‐hydroxyhexyl)acetamide in equilibrium with both hexanal and the dehydrated unsaturated imides. A catalytic mechanism is proposed in which a strong acid such as HOTs acts as a co‐catalyst by establishing a rapid chemical equilibrium between the aldehyde, acetamide and the intermediates. Furthermore, it is proposed that the presence of acid causes a change in catalytic species, enabling a cationic Rh/xantphos hydrogenation catalyst to selectively hydrogenate the intermediates to N‐hexylacetamide in the presence of hexanal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号