首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
综合类   1篇
化学工业   5篇
金属工艺   6篇
机械仪表   2篇
能源动力   1篇
水利工程   1篇
无线电   5篇
一般工业技术   4篇
原子能技术   1篇
自动化技术   10篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   1篇
  2011年   7篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2002年   1篇
  1997年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
31.
Quantum circuit design flow consists of two main tasks: synthesis and physical design. Addressing the limitations imposed on optimization of the quantum circuit objectives because of no information sharing between synthesis and physical design processes, we introduced the concept of “physical synthesis” for quantum circuit flow and proposed a technique for it. Following that concept, in this paper we propose a new technique for physical synthesis using auxiliary qubit selection to improve the latency of quantum circuits. Moreover, it will be shown that the auxiliary qubit selection technique can be seamlessly integrated into the previously introduced physical synthesis flow. Our experimental results show that the proposed technique decreases the average latency objective of quantum circuits by about 11% for the attempted benchmarks.  相似文献   
32.
A new method of preparing water‐based sol–gel containing titania nanoparticles for the protection of aluminum alloy AA2024 against corrosion was presented and performance of the coating in Harrison's solution was studied. The coating was prepared using alkoxysilanes, tetraethylorthosilicate (TEOS) and 3‐glycidoxypropyltrimethoxysilane (GPTMS), and in additional metal alkoxide, titanium(IV) tetrapropoxide (TPOT), as a source of titania particles. Poly(ethylene imine) (PEI) polymer was utilized to create cross‐linking and also to improve the coating quality. In addition, the molar ratios and amount of components and factors affecting performance were assessed to improve coating properties and its performance. Potentiodynamic scan (PDS) and electrochemical impedance spectroscopy (EIS) measurements were performed to evaluate the corrosion protection performance of coatings. Also, scanning electron microscopy (SEM) was employed to investigate surface morphology. The stability of the best prepared coating and its corrosion protective effects on the alloy were evaluated in Harrison's solution up to 15 days. The results revealed that this new sol–gel coating provides significant protection against corrosion of the AA2024 alloy in Harrison's solution.  相似文献   
33.
Although casting is commonly used to process aluminum alloys, powder metallurgy remains a promising technique to develop aluminum based materials for structural and functional applications. The possibility to synthesize Al-Mg-Zr alloys through mechanical alloying and spark plasma sintering techniques was explored. Al-10Mg-5Zr and Al-5Mg-1Zr alloyed powders were synthesized through wet ball milling the appropriate amount of elemental powders. The dried milled powders were spark plasma sintered through passing constant pulsed electric current with fixed pulse duration at a pressure of 35 MPa. The samples were vacuum sintered at 450, 500, 550, 600 and 620℃ for 10, 15 and 20 min. The Al-10Mg-5Zr alloy displays poor densification at lower sintering temperatures of 450, 500, 550 and 600℃. Its sinterability is improved at a temperature of 620℃ whereas sintering temperatures higher than 620℃ leads to partial melting of the alloy. It is possible to sinter the Al-5Mg-1Zr alloy at 450, 500 and 550℃. The increase of sintering temperature improves its densification and increases its hardness. The Al-5Mg-1Zr alloy displays better densification and hardness compared to Al-10Mg-5Zr alloys.  相似文献   
34.
As a therapeutic approach, epigenetic modifiers have the potential to enhance the efficacy of chemotherapeutic agents. Protein arginine methyltransferase 5 (PRMT5), highly expressed in lung adenocarcinoma, was identified to be involved in tumorigenesis. In the current study, we examined the potential antineoplastic activity of PRMT5 inhibitor, arginine methyltransferase inhibitor 1 (AMI-1), and cisplatin on lung adenocarcinoma. Bioinformatic analyses identified apoptosis, DNA damage, and cell cycle progression as the main PRMT5-associated functional pathways, and survival analysis linked the increased PRMT5 gene expression to worse overall survival in lung adenocarcinoma. Combined AMI-1 and cisplatin treatment significantly reduced cell viability and induced apoptosis. Cell cycle arrest in A549 and DMS 53 cells was evident after AMI-1, and was reinforced after combination treatment. Western blot analysis showed a reduction in demethylation histone 4, a PRMT5- downstream target, after treatment with AMI-1 alone or in combination with cisplatin. While the combination approach tackled lung cancer cell survival, it exhibited cytoprotective abilities on HBEpC (normal epithelial cells). The survival of normal bronchial epithelial cells was not affected by using AMI-1. This study highlights evidence of novel selective antitumor activity of AMI-1 in combination with cisplatin in lung adenocarcinoma cells.  相似文献   
35.
A sensing layer for a chemically sensitive field-effect transistor (CHEMFET) based on a composite of camphorsulfonic acid (CSA)-doped polyaniline (PANI) and the room-temperature ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)-imide, BMI(Tf2N), has been developed and characterized for the sensing of ammonia gas. The work function responses of the cast films with and without IL were analyzed by "stepwise" changes of ammonia gas concentration from 0.5 to 694 ppm in air as a function of the mole fraction of IL to PANI. The PANI x CSA/BMI(Tf2N) layers showed enhanced sensitivities, lower detection limits, and shorter response times. There is experimental evidence that PANI forms a charge-transfer complex with imidazolium cation.  相似文献   
36.
Stimuli-responsive materials can frequently tune between their temporary and original shapes, and have the potential for artificial intelligence-based technologies in robotics, aerospace, biomedical, engineering, security, etc. Shape memory polymers (SMPs) are promising for these technologies but their inadequate thermal and electrical characteristics causing slow shape recovery limit their practical applications. Herein, for the first time, comprehensively and precisely the shape memory polyurethane (PU), a promising SMP, via a variety of novel layered titanium carbides fillers, namely, Ti2AlC (MAX1), Ti3AlC2 (MAX2), and Ti3C2 (MXene), is engineered. The resultant PU-composites show 30–50% faster shape recovery in different environments, 20–25% greater extent of shape recovery in the load-constrained environment, 100–125% higher thermal conductivity, and 700–16 000× higher electrical current. Importantly, the reinforcement of even a small amount of MAX and MXene (such as 0.25 wt%) has largely boosted the performance of PU. Considering ease of processability and performance enhancement factors, the MAX-phase fillers may be preferred over MXene-phase fillers for next-generation composites development. Employing PU composite component as both heat-sensor and actuator, a unique heat detector/fire alarm device that works successfully in simulated heat and fire environments is demonstrated. This work is crucial for enabling futuristic technologies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号