首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   24篇
  国内免费   5篇
电工技术   7篇
综合类   2篇
化学工业   100篇
金属工艺   12篇
机械仪表   9篇
建筑科学   12篇
矿业工程   1篇
能源动力   22篇
轻工业   15篇
水利工程   18篇
石油天然气   4篇
无线电   40篇
一般工业技术   70篇
冶金工业   11篇
原子能技术   2篇
自动化技术   87篇
  2024年   1篇
  2023年   18篇
  2022年   32篇
  2021年   44篇
  2020年   28篇
  2019年   36篇
  2018年   34篇
  2017年   30篇
  2016年   33篇
  2015年   14篇
  2014年   22篇
  2013年   26篇
  2012年   28篇
  2011年   26篇
  2010年   10篇
  2009年   6篇
  2008年   5篇
  2007年   5篇
  2006年   4篇
  2004年   3篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1991年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有412条查询结果,搜索用时 0 毫秒
101.
The demand for wearable electronics has resulted in an increasing interest in the development of functional fibers, with a specific focus upon the development of electrically conductive fibers incorporable into garments. However, the production of thermally conductive fibers for heat dissipation has been largely neglected. Owing to the very rapid development of miniaturized wearable electronics, there is an increasing need for the development of thermally conductive fibers as heat sinks and thermal management processes. In this study, thermally conductive but electrically insulating boron nitride nanopowder (BNNP) fillers are used to effectively enhance the thermal conductivity and mechanical properties of elastomeric polyurethane fibers. Thermal conductivity enhancement of more than 160% is achieved at very low loadings of BNNP (less than 5 wt%) with an improvement in the mechanical properties of the unmodified fiber. These thermally conductive fibers are also incorporated into 3D textile structures as a proof of processability.  相似文献   
102.
Reservoir fluid modelling is one of the most important steps in reservoir simulation and modelling of flow lines as well as surface facilities. One of the most uncertain parameters of the reservoir fluids is the plus fraction. An accurate and consistent splitting scheme can reduce this uncertainty and as a result, enhance the modelling of reservoir fluids. The existing schemes for splitting plus fractions are all based on assuming a specific mole fraction‐molecular weight distribution with predefined constant values that may yield inaccurate and inconsistent results. In this study, an optimization‐based algorithm was developed to determine the aforementioned controlling parameters of the plus fraction distribution function, enforcing the relationship between specific gravity and molecular weight of the single carbon numbers (SCNs). The introduced optimization‐based splitting technique was applied to different samples, covering a wide range of reservoir fluids, including gas condensates, volatile oils, black oils, and heavy oils. The results showed that the proposed technique yielded a more consistent molecular weight‐mole fraction distribution concerning the experimental extended analysis of plus fractions, yielding an average relative error of 25.8 % compared to 76, 33.6, and 45.9 % for the Katz, Ahmed, and Whitson methods, respectively. It was also shown that the proposed method results in more accurate and more consistent phase behaviour predictions than the existing methods concerning the experimental data. Furthermore, the results showed that the introduced optimization‐based method yields monotonic split samples regarding specific gravity and molecular weight, while the conventional techniques do not guarantee to preserve the monotonicity.  相似文献   
103.
Graphene oxide (GO) was synthesized by Hummers method. GO and tungsten oxide (WO3) composites were successfully prepared by deposition of WO3 on GO surface to make efficient visible light catalyst. Scanning electron microscopy of pure GO revealed that GO films are folded with kinked and wrinkled edges. The interspaces layers are partially filled by WO3 nanoparticles with their less wrinkled edges and smooth surface of composite. Moreover, composite sheets are thin and transparent which allow easy penetration of light. EDS showed the presence of C, O, and W in GO/WO3 composites with no impurity. UV-Vis diffused reflectance spectra showed red shift with the increase in WO3 contents. Raman spectra of GO and GO/WO3 composite show G and D bands. These bands reduced in intensity in composite sample due to removal of oxygenated functional groups with some new peaks of WO3. FT-IR confirmed successful oxidation of graphite into GO with reduction in GO because oxide-related bond groups decrease after reduction. The transmittance peaks of WO3 in composite sample are appeared indicating W-O-C linkages. The highest visible light activity of the composite is due to easy penetration of light with deposition of WO3, low band gap, and new linkages.  相似文献   
104.
Highly photosensitive ZnO/WO3 photocatalysts were fabricated by wet impregnation of zinc oxide (ZnO) in different contents. Tungsten trioxide (WO3) was synthesized by hydrothermal route. The presence of ZnO inhibited the crystallization of WO3 and caused agglomeration of WO3 nanoparticles surface. The formation of Zn-O-W linkage was studied by X-ray photoelectron emission (XPS) and Fourier transforms Infra-red spectra (FTIR). These linkages were responsible for red shift of absorption peak of composites as compared to individual ZnO and WO3. The band gap was decreased due to incorporation of ZnO in WO3 which promoted the separation of photo-generated carriers. As a result, ZnO/WO3 composite showed extremely high efficiency for MO degradation in comparison with Degussa P25, pure ZnO and WO3. 2.0% ZnO/WO3 composite displayed the highest activity in photocatalytic decomposition of methyl orange (MO) dye.  相似文献   
105.
The present research work examines extraction mechanism of zinc by D2EHPA (Di-2-ethyl hexyl phosphoric acid) and comprehensively studies the main effective parameters on the process. Results of thermodynamic experiments showed that zinc extraction by D2EHPA was endothermic and spontaneous, and thermodynamic parameters including entropy and enthalpy were+27.37 J·mol-1·K-1 and 25.21 kJ·mol-1, respectively. Gibbs free energy was varied between -7.21 kJ·mol-1 and -8.41 kJ·mol-1 with the variation of temperature from 20℃ to 70℃. Solution ionic strength was increased by addition of potassium and lithium sulfate solution while addition of calcium sulfate decreased ionic strength whereby zinc extraction efficiency was also decreased. TBP showed positive synergism at concentration of 5% (v/v) and negative synergism effect at concentrations of 2% and 10%. Simultaneous addition of both TBP and salt caused extraction efficiency to drop significantly and lower both TBP and ionic strength efficiency. Results showed that a continuous addition of TBP tends to effectively improve the zinc extraction efficiency. Experiments in the presence of catalyst Ni-Raney demonstrated that zinc extraction kinetic increases remarkably and due to easy recycling of the catalyst, we can propose a novel idea in solvent extraction field.  相似文献   
106.
In this work, influence of initial conditions and surface characteristics of porous support layer on structure and performance of a thin film composite (TFC) polyamide reverse osmosis (RO) membrane was investigated. The phase inversion method was used for casting of polysulfone (PSf) supports and interfacial polymerization was used for coating of polyamide layer over the substrates. The effect of PSf concentrations that varied between 16 wt % and 21 wt %, and kind of the solvent (DMF and NMP) used for preparation of initial casting solution were investigated on the properties of the final RO membranes. SEM imaging, surface porosity, mean pore radius, and pure water flux analysis were applied for characterization of the supports. The substrate of the membrane, which synthesized with 18 wt % of PSf showed the most porosity and the synthesized RO membrane had the lowest salt rejection. In case of the solvents, the membranes synthesized with DMF presented better separation performance that can be attributed to their lower thickness and sponge‐like structure. The best composition of support for TFC RO membranes reached 16 wt % PSf in DMF solvent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44444.  相似文献   
107.
Polymer Bulletin - Alumina nanoparticles are among important metal oxides with specific properties but chemically incompatible with an organic matrix such as poly(methyl methacrylate) (PMMA). In...  相似文献   
108.
In this work, synthesis of Ni nanoparticles was carried out successfully by water extract of Allium jesdianum as a biochemical reducing agent in the presence of montmorillonite clay (MMT) as a natural solid support for the first time. Then the electrochemical activity of the synthesized nanocomposite was investigated in methanol electrocatalytic oxidation. MMT with high cation exchange capacity and nano layer structure was exposed to ion exchange conditions in nickel solution. Then Ni2+ ion exchanged form was used in this process as a source of ions and also capping agent. Water extract of Allium jesdianum used as a reducing agent due to abundant availability of phenolic and flavonoid contents. The synthesized Ni/MMT nanocomposite was characterized using UV–Vis spectroscopy (UV–Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Energy-dispersive X-ray spectroscopy (EDX). The surface of prepared modified electrode has been characterized using SEM to evaluate the morphology, showing uniform dispersion of Ni nanoparticles with mean diameter of 12 to 20 nm. The modified carbon paste electrode was then used in methanol electrocatalytic oxidation reaction. Methanol oxidation on the proposed modified electrode surface occurs at 0.6 V and 0.3 V in alkaline and acidic medium respectively. Also, the results showed the better performance of modified electrode toward methanol electrocatalytic oxidation in comparison with carbon paste electrode that is modified by ion exchanged MMT. Charge transfer coefficients and apparent charge transfer rate constant for the modified electrode in the absence of methanol in alkaline medium were respectively found as: αa = 0.53, αc = 0.37 and ks = 1.6 × 10−1 s−1. Also, the average value of catalytic rate constant for the electrocatalytic oxidation of methanol by the prepared nano-catalyst was estimated to be about 0.9 L·mol-1·s-1 by chronoamperometry technique. The prepared electrode was also effective for electrocatalytic oxidation of ethanol and formaldehyde in alkaline medium.  相似文献   
109.
Sajjad H. Maruf 《Polymer》2011,52(12):2643-2649
Thin film composite (TFC) reverse osmosis (RO) membranes enjoy widespread use in desalination, but their sensitivity to oxidizing agents such as chlorine remains a continuing challenge. In contrast to many reports on the chemical aspects associated with decreased membrane performance after chlorine exposure, studies on the fundamental physical properties of the polyamide barrier layer (PBL) of TFC membranes are scarce. This omission is mostly due to the lack of techniques capable of characterizing such interfacially polymerized PBLs, which are ultrathin and insoluble. The focus of this study is the development of an AFM-based nano-thermal analysis technique that provides the first-ever result for the direct measurement of the glass transition temperature (Tg) of the PBL on several commercial TFC RO membranes. Moreover, the technique is utilized to study the changes in Tg of the PBL after exposure to chlorine solutions as a function of concentration and duration at constant pH. Results indicate significant and systematic reduction in Tg of the PBL with increasing chlorine concentration and exposure time.  相似文献   
110.
The adsorption phenomenon of bromo-phenol blue onto pristine and thermally evacuated granular charcoal (GC) was studied via a batch technique at 25 °C. The effect of evacuation temperature on the GC surface and pore structure (e.g. pore volume and diameter) was studied by Fourier transform infrared spectroscopy (FT-IR), point of zero charge (PZC), proximate analysis, Brunauer, Emmett and Teller (BET) method and field emission scanning electron microscopy (FE-SEM). The FT-IR spectra of the samples after evacuation showed considerable decrease in the acidic functional groups. PZC showed that the surface of the evacuated charcoal became basic as the evacuation temperature was increased from 300 to 800 °C. Volatile matter decreased while ash and fixed carbon contents increased during evacuation, which led to an increase in the micro-pore volume from 0.25 to 0.42 cm3 g−1, meso-pore volume from 0.04 to 0.13 cm3 g−1, pore diameter from 5.01 to 6.21 nm, and specific surface from 150.32 to 254.70 m2 g−1. Adsorption of the bromo-phenol blue onto charcoal, increased as the evacuation temperature was increased from 300 to 800 °C. The interaction of bromo-phenol blue with charcoal was proposed to have occurred via hydrogen bonding. The adsorption data fitted well with the Langmuir equation, which indicated that the monolayer adsorption has occurred at specific sites within the adsorbent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号