首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   976篇
  免费   56篇
  国内免费   2篇
电工技术   16篇
化学工业   325篇
金属工艺   10篇
机械仪表   28篇
建筑科学   20篇
能源动力   26篇
轻工业   80篇
水利工程   10篇
石油天然气   3篇
无线电   106篇
一般工业技术   136篇
冶金工业   80篇
原子能技术   3篇
自动化技术   191篇
  2024年   2篇
  2023年   15篇
  2022年   72篇
  2021年   65篇
  2020年   32篇
  2019年   17篇
  2018年   42篇
  2017年   30篇
  2016年   26篇
  2015年   27篇
  2014年   44篇
  2013年   69篇
  2012年   67篇
  2011年   63篇
  2010年   37篇
  2009年   30篇
  2008年   39篇
  2007年   41篇
  2006年   37篇
  2005年   19篇
  2004年   21篇
  2003年   16篇
  2002年   16篇
  2001年   14篇
  2000年   12篇
  1999年   24篇
  1998年   22篇
  1997年   15篇
  1996年   17篇
  1995年   7篇
  1994年   12篇
  1993年   13篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   5篇
  1987年   5篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1977年   8篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1967年   1篇
  1966年   2篇
  1961年   1篇
  1957年   1篇
排序方式: 共有1034条查询结果,搜索用时 0 毫秒
41.
42.
Organic solar cells made using a blend of DPM12 and P3HT are studied. The results show that higher Voc can be obtained when using DPM12 in comparison to the usual mono‐substituted PCBM electron acceptor. Moreover, better device performances are also registered when the cells are irradiated with sun‐simulated light of 10–50 mW cm?2 intensity. Electrochemical and time‐resolved spectroscopic measurements are compared for both devices and a 100‐mV shift in the density of states (DOS) is observed for DPM12/P3HT devices with respect to PCBM/P3HT solar cells and slow polaron‐recombination dynamics are found for the DPM12/P3HT devices. These observations can be directly correlated with the observed increase in Voc, which is in contrast with previous results that correlated the higher Voc with different ideality factors obtained using dark‐diode measurements. The origin for the shift in the DOS can be correlated to the crystallinity of the blend that is influenced by the properties of the included fullerene.  相似文献   
43.
Hierarchical core–shell (C–S) heterostructures composed of a NiO shell deposited onto stacked‐cup carbon nanotubes (SCCNTs) are synthesized by atomic layer deposition (ALD). A film of NiO particles (0.80–21.8 nm in thickness) is uniformly deposited onto the inner and outer walls of the SCCNTs. The electrical resistance of the samples is found to increase of many orders of magnitude with the increasing of the NiO thickness. The response of NiO–SCCNT sensors toward low concentrations of acetone and ethanol at 200 °C is studied. The sensing mechanism is based on the modulation of the hole‐accumulation region in the NiO shell layer upon chemisorption of the reducing gas molecules. The electrical conduction mechanism is further studied by the incorporation of an Al2O3 dielectric layer at NiO and SCCNT interfaces. The investigations on NiO–Al2O3–SCCNT, Al2O3–SCCNT, and NiO–SCCNT coaxial heterostructures reveal that the sensing mechanism is strictly related to the NiO shell layer. The remarkable performance of the NiO–SCCNT sensors toward acetone and ethanol benefits from the conformal coating by ALD, large surface area of the SCCNTs, and the optimized p‐NiO shell layer thickness followed by the radial modulation of the space‐charge region.  相似文献   
44.
Water resources management may be improved through the activities of organizations devoted to practice-oriented research, continuing education, and technical assistance. The experience carried out in southern Italy by CSEI Catania during 13 years of activity is presented. Two main activities are discussed: the research and training program on regional pollution control plans and the development of a water data bank.  相似文献   
45.
46.
Near‐field plasmonic coupling and local field enhancement in metal nanoarchitectures, such as arrangements of nanoparticle clusters, have application in many technologies from medical diagnostics, solar cells, to sensors. Although nanoparticle‐based cluster assemblies have exhibited signal enhancements in surface‐enhanced Raman scattering (SERS) sensors, it is challenging to achieve high reproducibility in SERS response using low‐cost fabrication methods. Here an innovative method is developed for fabricating self‐organized clusters of metal nanoparticles on diblock copolymer thin films as SERS‐active structures. Monodisperse, colloidal gold nanoparticles are attached via a crosslinking reaction on self‐organized chemically functionalized poly(methyl methacrylate) domains on polystyrene‐block‐poly(methyl methacrylate) templates. Thereby nanoparticle clusters with sub‐10‐nanometer interparticle spacing are achieved. Varying the molar concentration of functional chemical groups and crosslinking agent during the assembly process is found to affect the agglomeration of Au nanoparticles into clusters. Samples with a high surface coverage of nanoparticle cluster assemblies yield relative enhancement factors on the order of 109 while simultaneously producing uniform signal enhancements in point‐to‐point measurements across each sample. High enhancement factors are associated with the narrow gap between nanoparticles assembled in clusters in full‐wave electromagnetic simulations. Reusability for small‐molecule detection is also demonstrated. Thus it is shown that the combination of high signal enhancement and reproducibility is achievable using a completely non‐lithographic fabrication process, thereby producing SERS substrates having high performance at low cost.  相似文献   
47.
A combined experimental/numerical methodology is developed to fully consolidate pure ultrafine WC powder under a current-control mode. Three applied currents, 1900, 2100 and 2700 A, and a constant pressure of 20 MPa were employed as process conditions. The developed spark plasma sintering (SPS) finite-element model includes a moving-mesh technique to account for the contact resistance change due to sintering shrinkage and punch sliding. The effects of the heating rate on the microstructure and hardness were investigated in detail along the sample radius from both experimental and modeling points of view. The maximum hardness (2700 HV10) was achieved for a current of 1900 A at the core sample, while the maximum densification was achieved for 2100 and 2700 A. A direct relationship between the compact microstructure and both the sintering temperature and the heating rate was established.  相似文献   
48.
Network survivability requires the provisioning of backup resources in order to protect active traffic against any failure scenario. Backup resources, however, can remain unused most of the time while the network is not in failure condition, inducing high power consumption wastage, if fully powered on. In this paper, we highlight the power consumption wastage of the additional resources for survivability in IP/multi-protocol label switching (MPLS) over dense wavelength division multiplexing multi-layer optical networks. We assume MPLS protection switching as the failure recovery mechanism in the network, a solution interesting for current network operators to ensure fast recovery as well as fine-grained recovery treatment per label switched path. Next, we quantitatively show how elastic optical technologies can effectively reduce such a power consumption by dynamically adjusting the data rate of the transponders to the carried amount of traffic.  相似文献   
49.
Seismic and fire design of a building structure may be two very demanding tasks, especially if included in a performance based design philosophy. For the time being, the necessary harmonization on the regulations concerning these two design fields is almost missing, thus preventing the effective possibility of an integrated design. Besides, while many countries have already moved towards the use of performance-based codes for seismic design, the application of such methodologies for the fire design of structures is still limited in scope. Within this framework, the development of suitable procedures introducing structural fire performance issues for a comprehensive design methodology is needed.In this paper, a numerical investigation for the assessment of the structural fire performance of earthquake resistant composite steel–concrete frames is presented. With reference to a case study defined in the framework of a European Research Project, a great effort was devoted to the identification of the key structural parameters allowing for a possible correlation between the predictable performances under seismic and fire loadings, when these two are considered as independent actions.At the conceptual design level, the most suitable structural solution with respect to both design actions was chosen, including composite beams and circular steel concrete-filled columns. The frame was designed in order to resist severe seismic action according to the ductile design approach provided by Eurocode 8; the parameters affecting members’ sizing were outlined in this phase. Afterwards, the seismic performance of the designed frame was investigated by means of non-linear static analyses; once the seismic performance objectives were met, in order to evaluate the structural fire performance of the whole frame a set of criteria was defined. To this purpose, thermo-mechanical analyses under different boundary conditions were developed and in order to identify the possible mechanisms leading to structural failure, the state of stress at the critical cross-sections at different times of fire exposure was investigated. Another point of main concern was represented by the assessment of the influence of different restraining conditions on the achieved fire resistance rating and kind of structural failure.Moreover, the proposed methodology allowed making an estimate of the amount of axial restraint provided to the heated beams by the surrounding structure; in this view, the importance of choosing column elements in function of their flexural stiffness was revealed, in order to correlate it with the predictable performances under both seismic and fire loadings.  相似文献   
50.
Several experimental investigations in the past few years have highlighted the fact that the compressive strength of glass was significantly higher than its tensile strength, allowing new applications of glass in compression members. However, due to the high slenderness of structural glass elements made of thin glass panels, they tend to fail in a brittle manner. A substantial amount of fundamental research has been carried out in the past few years to investigate the stability behaviour of structural glass elements. However, although buckling of glass panels has been quite well studied, a very poor amount of research has been addressed to glass columns, which by contrast represent the most interesting case due to their direct application in buildings. In this paper, the results of ten compressive tests on glass panels and columns are presented and discussed. The main variables considered were slenderness of panels and the shape of the cross-section for columns. The results of six bending tests on monolithic and laminated glass panels are also shown, and the level of connection between the glass sheets was evaluated. A review of the theoretical background is provided and the results achievable with existing analytical models are compared.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号