首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   20篇
  国内免费   4篇
电工技术   4篇
化学工业   86篇
金属工艺   19篇
机械仪表   9篇
建筑科学   3篇
能源动力   16篇
轻工业   24篇
无线电   31篇
一般工业技术   98篇
冶金工业   17篇
原子能技术   1篇
自动化技术   65篇
  2024年   1篇
  2023年   6篇
  2022年   18篇
  2021年   9篇
  2020年   15篇
  2019年   10篇
  2018年   8篇
  2017年   17篇
  2016年   15篇
  2015年   11篇
  2014年   28篇
  2013年   48篇
  2012年   34篇
  2011年   30篇
  2010年   17篇
  2009年   18篇
  2008年   24篇
  2007年   9篇
  2006年   9篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有373条查询结果,搜索用时 15 毫秒
71.
Investigation of the causes of premature failure of a spline-shaft used in the hoist gear box assembly of an under slung crane has been presented. The investigation consisted of visual inspection, chemical analysis, characterization of microstructures by optical and scanning electron microscopes, energy dispersive spectroscopy (EDS), and hardness measurement. Visual observation of the fracture surface of the shaft revealed multiple cracks all of which initiated at the sharp corners of the spline. Fractography of the shaft showed striations confirming fatigue. The chemical composition of the shaft was found to be close to EN-24 grade of hardened and tempered steel which is specified as per IS 5517. Microstructural examination showed branched-out cracks and few of them were associated with oxide layer or scale which was confirmed by EDS analysis. Since the shaft was not exposed to high temperature in service, formation of scale along the crack suggested that it was pre-existing in the component. Base matrix of the shaft revealed bainitic microstructure. Hardness values were found to be lower than that obtained for EN-24 grade in hardened and tempered condition. Analyses of the results suggest that the component suffered from fatigue under reversed torsional loading, which initiated at pre-existing cracks in the component.  相似文献   
72.
Reinforcing bars, popularly termed “rebars,” are used to impart tensile strength to concrete structures. Concrete has high resistance to weathering and fire and high compressive strength but almost no tensile strength, hence rebars are used to provide the latter to concrete. Property consistency along the length of rebars is an important prerequisite. When the finished product is subjected to thermomechanical treatment (TMT), proper control of rolling and water box parameters and efficient pinch rolling are needed to achieve acceptable properties. Variation of yield strength (YS) along TMT bars from the front to back end has been observed within the same heat treatment. In the presented investigation, it was observed that pinch rolling ineffectiveness is the main reason for the poor mechanical properties at the back end. The pinch roller was unable to support the back end of the TMT bars properly to maintain the speed and tension of the bars, resulting in nonuniform cooling of the back end through the water box and subsequent mechanical property failure. Due to the substandard material of the pinch roller, it was unable to hold the back end of the bar properly. Based on analysis of the roller it was concluded that it failed due to improper microstructure, resulting in inadequate hardness and toughness for the stringent operating conditions. AISI H13 is a better material to use in such high-service-temperature conditions. Moreover, proper heat treatment is needed to achieve adequate hardness and microstructure properties. After proper heat treatment of pinch rollers, their service life was increased twofold, minimizing the YS variation along the rebars.  相似文献   
73.
74.
3D integration of ICs is an emerging technology where multiple silicon dies are stacked vertically. The manufacturing itself is based on wafer-to-wafer bonding, die-to-wafer bonding or die-to-die bonding. Wafer-to-wafer bonding has the lowest yield as a good die may be stacked against a bad die, resulting in a wasted good die. Thus the latter two options are preferred to keep yield high and manufacturing costs low. However, these methods require dies to be tested separately before they are stacked. A problem with testing dies separately is that the clock network of a prebond die may be incomplete before stacking. In this paper we present a solution to address this problem. The solution is based on on-die Delay Lock Loop (DLL) implementations that are only activated during testing prebond unstacked dies to synchronize disconnected clock regions. A problem with using DLLs in testing is that they cannot be turned on or off within a single cycle. Since scan-based testing requires that test patterns be scanned in at a slow clock frequency before fast capture clocks are applied, On-Product Clock Generation (OPCG) must be used. The proposed solution addresses the above problems and allows a prebond with an incomplete clock network to be tested with low skew.  相似文献   
75.
An approach to laser dressing of alumina grinding wheels is proposed based on solidification microstructures associated with rapid cooling rates obtained in laser surface processing. Laser dressing of alumina grinding wheels forms surface microstructures characterized by multifaceted grains that are expected to facilitate the micro-scale material removal during precision machining. A detailed investigation of variation of grain size and melt depth with laser fluence is conducted. The results are correlated with calculated cooling rates derived from a thermal model. In addition, based on microscopic observations, the formation of surface grains by stacking of individual multifaceted grains formed during laser dressing is suggested.  相似文献   
76.
The weld deposition efficiency is an important economic factor like productivity and weld quality in gas metal arc welding (GMAW). There is a strong relationship between arc sound signals and arc stability (or deposition efficiency) in GMAW. In this work, the variation of weld deposition efficiency with various pulse parameters in pulsed metal inert gas welding was investigated. The arc sound signal along with current and voltage signals were acquired and analyzed in time domain as well as in frequency domain. The sound signal kurtosis and arc power were found to be highly correlated with welding process stability. The weld deposition efficiency was also related to weld surface peak temperature. Finally, an attempt was made to correlate the sound time domain as well as frequency domain features of sound signal with the deposition efficiency. The variation of pulse shape with the duty factor also influenced the deposition efficiency as evidenced by in fast Fourier transform analysis.  相似文献   
77.
Medium resolution magneto-optic Faraday rotation measurement setup has been reported. Measuremental setup reported is made up of simple polarized laser source, beam expander, analyzer and a bisected cross polarizedp-n detector for single ended measurements. Result of CoO modified yttrium iron garnet (YIG) films showed a rotation of 3 deg/μm which is comparable to earlier reported Co-doped YIG films. Paper presented at the poster session of MRSI AGM VI, Kharagpur, 1995  相似文献   
78.
The manipulation of networked cyberphysical devices via local external actuation or feedback control is explored, in the context of a canonical multiagent dynamical system that is engaged in a consensus or synchronization task. One main focus is to understand whether or not, and how easily, a stakeholder can manipulate the full network's dynamics by hijacking only one agent's actuation signal. Explicit spectral characterizations are given of the energy (effort) required to manipulate the dynamics. These characterizations are used to (1) gain structural insights into ease of manipulation, (2) show that manipulation along the consensus manifold is easy, and (3) address network design to enable or prevent manipulation. Additionally, it is shown that the multiagent system can be manipulated effectively along the consensus manifold using local feedback controls, which do not require model knowledge or wide‐area measurements.  相似文献   
79.
We investigate analytically the combined consequences of electromagnetohydrodynamic forces and interfacial slip on streaming potential mediated pressure-driven flow in a microchannel. Going beyond traditional Debye–Hückel limit, we first derive a closed-form analytical solution for velocity field by considering nonlinear electrical potential distribution, wall slip effects, externally imposed transverse magnetic field, and laterally applied electric field in the plane of flow. The effects of electrical double-layer (EDL) formation and the consequent interfacial phenomena are critically examined under such situations. An expression for induced streaming potential in the microchannel is deduced considering EDL formation and the consequences of finite conductance of the immobilized Stern layer. This simplified analytical expression is later on critically assessed against three-dimensional simulation paradigm of streaming potential mediated flows, which is a first effort of this kind. We demonstrate that flow rate increases progressively with increasing surface potential and eventually approaches to a limiting value. Combination of electromagnetohydrodynamic effect with liquid slip is shown to amplify the flow rate, even at lower values of surface potential. Our study brings out the possibility of achieving an optimum flow rate by judicious application of combined electromagnetohydrodynamics. The present analysis has significant consequence in the design of advanced microfluidic devices with improved efficiency and functionality.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号