首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64062篇
  免费   13703篇
  国内免费   139篇
电工技术   1119篇
技术理论   1篇
综合类   118篇
化学工业   22755篇
金属工艺   1416篇
机械仪表   2388篇
建筑科学   2175篇
矿业工程   52篇
能源动力   1933篇
轻工业   9066篇
水利工程   405篇
石油天然气   179篇
武器工业   10篇
无线电   10331篇
一般工业技术   16173篇
冶金工业   2260篇
原子能技术   390篇
自动化技术   7133篇
  2024年   38篇
  2023年   362篇
  2022年   530篇
  2021年   1118篇
  2020年   1985篇
  2019年   3618篇
  2018年   3779篇
  2017年   4036篇
  2016年   4562篇
  2015年   4474篇
  2014年   4831篇
  2013年   6456篇
  2012年   4401篇
  2011年   4445篇
  2010年   4143篇
  2009年   4019篇
  2008年   3462篇
  2007年   2946篇
  2006年   2604篇
  2005年   2234篇
  2004年   2070篇
  2003年   1977篇
  2002年   1894篇
  2001年   1673篇
  2000年   1548篇
  1999年   976篇
  1998年   841篇
  1997年   527篇
  1996年   491篇
  1995年   313篇
  1994年   240篇
  1993年   188篇
  1992年   145篇
  1991年   133篇
  1990年   105篇
  1989年   114篇
  1988年   85篇
  1987年   75篇
  1986年   63篇
  1985年   57篇
  1984年   47篇
  1983年   40篇
  1982年   35篇
  1981年   34篇
  1980年   31篇
  1979年   18篇
  1977年   25篇
  1976年   34篇
  1975年   17篇
  1974年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
103.
A series of new o‐phenylenediamine (OPD)/o‐phenetidine (PHT) copolymers with partly phenazine‐like structures has been successfully synthesized at three polymerization temperatures by chemically oxidative polymerization in four different polymerization media. The molecular structures and properties of the resulting OPD/PHT polymers were investigated by IR, UV–vis and high‐resolution 1H NMR spectroscopies, and DSC, in order to ascertain the effect of reaction temperature, comonomer ratio and acid medium. The copolymerization mechanism of OPD with PHT monomers has been proposed. It is found that the statistical OPD/PHT copolymer obtained at a temperature of 118 °C has a higher degree of polymerization than that obtained at 12–17 °C. The OPD content in the copolymers calculated from NMR spectroscopic analysis is higher than that in the feed OPD content, whereas the OPD content calculated from element analysis is slightly lower than the feed OPD content. It can be predicted that denitrogenation takes place in the OPD units during the polymerization process at OPD/PHT molar ratios of 90/10 and 100/0. These OPD/PHT copolymers exhibit a much better solubility than the OPD homopolymer, hence suggesting an incorporation of PHT units into the phenazine structure of the homopolymer. The thermal behavior of the copolymers was also studied. Copyright © 2004 Society of Chemical Industry  相似文献   
104.
Three sorbents were compared in order to determine their potential for oil spill cleanup. Polypropylene nonwoven web, rice hull, and bagasse with two different particle sizes were evaluated in terms of oil sorption capacities and oil recovery efficiencies. Polypropylene can sorb almost 7 to 9 times its weight from different oils. Bagasse, 18 to 45 mesh size, follows polypropylene as the second sorbent in oil spill cleanup. Bagasse, 14 to 18 mesh size, and rice hull have comparable oil sorption capacities, which are lower than those of the two former sorbents. It was found that oil viscosity plays an important role in oil sorption by sorbents. All adsorbents used in this work could remove the oil from the surface of the water preferentially.  相似文献   
105.
Different NMR techniques were combined to obtain the structure and velocity information for a systematic investigation of fixed beds with low aspect ratio (tube diameter to particle diamter, dt/dp) in the range 1.4 to 32. The structure of the void space was determined for a variety of packed beds of glass beads or regular and irregular porous pellets by magnetic resonance imaging (MRI). Based on the images the radial distribution of the voids within the bed was obtained. Ordering effects were found even for non‐spherical and polydisperse particles, and a maximum of the fluid density near the tube wall was confirmed for all pellet geometries and sizes. By combining MRI with velocity encoding, velocity profiles and distributions of flow velocity components of a single fluid phase through packed beds have been acquired. The radial velocity distribution follows an oscillatory pattern which largely reflects the ordering of the particles, which can be accessed from the density distribution of the interparticle fluid. Maximum velocities of up to four times the average value were found to occur near the tube wall. This wall effect was observed for all but the smallest particles, where the aspect ratio was dt/dp = 32. Moreover, a visualisation of flow pattern in the presence of packed particles was achieved by using a tagging technique, and the stationary flow field could be identified for an experimental time of several hours.  相似文献   
106.
BACKGROUND: Two peat biofilters were used for the removal of toluene from air for one year. One biofilter was fed with pure toluene and the other received 1:1 (by weight) ethyl acetate:toluene mixture. RESULTS: The biofilters were operated under continuous loading: the toluene inlet load (IL) at which 80% removal occurred was 116 g m?3 h?1 at 57 s gas residence time. Maximum elimination capacity of 360 g m?3 h?1 was obtained at an IL of 745 g m?3 h?1. The elimination of toluene was inhibited by the presence of ethyl acetate. Intermittent loading, with pollutants supplied for 16 h/day, 5 days/week, did not significantly affect the removal efficiency (RE). Biomass was fully activated in 2 h after night closures, but 6 h were required to recover RE after weekend closures. Live cell density remained relatively constant over the operational period, while the dead cell fraction increased. Finally, a 15 day starvation period was applied and operation then re‐started. Performance was restored with similar re‐acclimatization period to that after weekend closures, and a reduction in dead cell fraction was observed. CONCLUSION: This study demonstrates the capacity of the system to handle intermittent loading conditions that are common in industrial practices, including long‐term starvation. Copyright © 2008 Society of Chemical Industry  相似文献   
107.
Laboratory scale experiments were conducted to study the deterioration of enhanced biological phosphorus removal (EBPR) due to influent ammonium concentration, and to compare the performance of two types of sequencing batch reactor (SBR) systems, a conventional SBR and sequencing batch biofilm reactor (SBBR). Both in SBR and SBBR, the total nitrogen removal efficiency decreased from 100% to 53% and from 87.5% to 54.4%, respectively, with the increase of influent ammonium concentration from 20 mg/l to 80 mg/l. When the influent ammonium concentration was as low as 20 mg/l (C: N: P=200: 20: 15), denitrifying glycogen-accumulating organisms (DGAOs) were successfully grown and activated by using glucose as a sole carbon source in a lab-scale anaerobic-oxic-anoxic (A2O) SBR. In the SBR, due to the effect of incomplete denitrification and pH drop, the nitrogen and phosphorus removal efficiency decreased from 77% to 33.3% when the influent ammonium concentration increased from 20 mg/l to 80 mg/l. However, in the SBBR, simultaneous nitrification/denitrification (SND) occurred, and the nitrification rate in the aerobic phase did not change remarkably in spite of the increase in influent ammonium concentration. Phosphorus removal was not affected by the increase of influent ammonium concentration.  相似文献   
108.
BACKGROUND: Many industrial discharges, such as those generated from petrochemical refineries, contain large amounts of sulfurous, nitrogenous and organic contaminants. Denitrification has emerged as a suitable technology for the simultaneous removal of these pollutants in a single reactor unit; however, more evidence is demanded to clarify the limitations of denitrification on the simultaneous removal of sulfide and phenolic contaminants and to optimize the biological process. The aim of this study was to evaluate the capacity of a denitrifying sludge to simultaneously convert sulfide and p‐cresol via denitrification. RESULTS: Sulfide was the preferred electron donor over p‐cresol, imposing a 5 h lag phase (required for complete sulfide removal) on organotrophic denitrification. Addition of sulfide (20 mg S2? L?1) to p‐cresol‐amended denitrifying cultures also decreased the reduction rate of nitrate and nitrite, as well as the production rate of nitrogen gas. Nitrite reduction rate was the most affected step by sulfide, decreasing from 35 to 21 mg N (g VSS d)?1. A synergistic inhibitory effect of nitrate and sulfide was also observed on nitrite reduction. Despite the effects of sulfide on the respiratory rates monitored, complete removal of nitrate, sulfide and p‐cresol could be achieved after 48 h of incubation. CONCLUSION: Our results suggest that simultaneous removal of sulfide and p‐cresol could be achieved in denitrifying reactors, but a large hydraulic residence time may be required to sustain an efficient process due to inhibitory effects of sulfide. Copyright © 2008 Society of Chemical Industry  相似文献   
109.
Poly(2,4‐dimethyl‐1,4‐phenylene oxide) (PPO), poly(benzo[1,2‐d:5,4‐d′]bisoxazole‐2,6‐diyl‐1,4‐phenylene) (PBO) and poly(benzo[1,2‐d:4,5‐d′]bisthiazole‐2,6‐diyl‐1,4‐phenylene) (PBZT), which are polymers with extended conjugated structures, undergo a self‐sensitized photo‐induced electron‐transfer reaction. A second component is not required. This article presents many similar observations on these polymers when they are exposed to light and evidence to support the proposed photo‐induced electron‐transfer mechanism. Methods to stabilize these polymers against photo‐oxidation are also described. Workers investigating other conjugated polymeric systems may find the experimental methods, observations and polymer stabilization approaches discussed in this review useful. Copyright © 2005 Society of Chemical Industry  相似文献   
110.
A two‐dimensional (2D) spectrofluorometer was used to monitor various fermentation processes with recombinant E coli for the production of 5‐aminolevulinic acid (ALA). The whole fluorescence spectral data obtained during a process were analyzed using artificial neural networks, ie self‐organizing map (SOM) and feedforward backpropagation neural network (BPNN). The SOM‐based classification of the whole spectral data has made it possible to qualitatively associate some process parameters with the normalized weights and variances, and to select some useful combinations of excitation and emission wavelengths. Based on the classified fluorescence spectra a supervised BPNN algorithm was used to predict some of the process parameters. It was also shown that the BPNN models could elucidate some sections of the process's performance, eg forecasting the process's performance. Copyright © 2005 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号