首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1698篇
  免费   65篇
  国内免费   9篇
电工技术   17篇
综合类   2篇
化学工业   410篇
金属工艺   105篇
机械仪表   50篇
建筑科学   27篇
能源动力   86篇
轻工业   67篇
水利工程   14篇
石油天然气   3篇
无线电   261篇
一般工业技术   347篇
冶金工业   83篇
原子能技术   5篇
自动化技术   295篇
  2024年   7篇
  2023年   40篇
  2022年   63篇
  2021年   81篇
  2020年   72篇
  2019年   61篇
  2018年   93篇
  2017年   83篇
  2016年   72篇
  2015年   49篇
  2014年   80篇
  2013年   150篇
  2012年   82篇
  2011年   101篇
  2010年   82篇
  2009年   84篇
  2008年   65篇
  2007年   65篇
  2006年   57篇
  2005年   39篇
  2004年   26篇
  2003年   21篇
  2002年   25篇
  2001年   30篇
  2000年   23篇
  1999年   20篇
  1998年   17篇
  1997年   32篇
  1996年   19篇
  1995年   26篇
  1994年   25篇
  1993年   16篇
  1992年   16篇
  1991年   9篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1987年   3篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1976年   1篇
  1975年   3篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有1772条查询结果,搜索用时 0 毫秒
91.
Devi  Neena  Patel  Sanjay K. S.  Kumar  Pradeep  Singh  Archana  Thakur  Nandita  Lata  Jeevan  Pandey  Deepak  Thakur  Vikram  Chand  Duni 《Catalysis Letters》2022,152(4):944-953
Catalysis Letters - In this study, Rhodococcus pyridinivorans cells containing hyperactive acyltransferase was immobilized on various macromolecules based-polymeric matrices and used to improve...  相似文献   
92.
In this investigation, we studied the impact toughness and viscoelastic behavior of polypropylene (PP)–jute composites. In this study, we used viscose fiber as an impact modifier and maleated PP as a compatibilizer. The toughness of the composites was studied with conventional Charpy and instrumental falling‐weight impact tests. The composites’ viscoelastic properties were studied with dynamic mechanical analysis. The results show that the incorporation of viscose fibers improved the impact strength and toughness to 134 and 65% compared to those of the PP–jute composites. The tan δ peak amplitude also increased with the addition of the impact modifier and indicated a greater degree of molecular mobility. The thermal stability of the composites was evaluated with thermogravimetric analysis. The addition of 2 wt % maleated polypropylene (MAPP) to the impact‐modified composite improved the impact strength and toughness to 144 and 93%, respectively. The fiber–matrix morphology of the fracture surface and the Fourier transform infrared spectra were also studied to ascertain the existence of the type of interfacial bonds. Microstructural analysis showed the retention of viscose fibers in the composites compared to the more separated jute fibers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42981.  相似文献   
93.
Three chemically modified/impregnated activated carbons (supplied by manufactures) were used for adsorption–catalytic removal of hydrogen sulfide from digester gas. The performance of samples was studied in dynamic conditions at 1000, 2000 and 5000 ppm of H2S in digester gas. The results showed differences in the H2S removal capacities related to the type of carbon and conditions of the experiment. A decrease in H2S concentration resulted in an increase in a breakthrough capacity, which is linked to slow kinetics of oxidation process. No significant changes were observed when the oxygen content increased from 1 to 2% and the temperature from 38 to 60 °C. On the surface of carbons studied hydrogen sulfide was oxidized predominantly to sulfur, which was deposited in micropores, either on the walls or at the pore entrances. The capacities at low concentrations, 50 and 100 ppm, of H2S were determined using an approach based on known theoretical solution of a dynamic model where the parameters of the model were determined from the experimental data at a high concentration of an adsorbate.  相似文献   
94.
The photocatalytic degradation (PCD) of 4-nitroaniline was studied in the presence of TiO2 suspensions in a batch and continuous annular reactor. Artificial and solar radiation was employed as sources of UV radiation. The effect of catalyst loading, pH, presence of anions and initial concentration on the rate of photocatalytic degradation was investigated. p-Aminophenol, p-benzoquinone and hydroquinone were identified as the intermediates during the degradation process. A kinetic expression for PCD of 4-NA is provided.  相似文献   
95.
Sheets of polyetheretherketone (PEEK) and PEEK-alumina composites with micron-sized alumina powder with 5, 10, 15, 20, and 25% by weight were fabricated, irradiated with gamma rays up to 10 MGy and the degradation in their thermal properties and morphology were evaluated. The radicals generated during irradiation get stabilized by chain scission and crosslinking. Chain scission is predominant on the surface and crosslinking is predominant in the bulk of the samples. Owing to radiation damage, the glass transition temperature, T g increased for pure PEEK from 136 to 140.5?°C, whereas the shift in T g for the composites decreased with increase in alumina content and for PEEK-25% alumina, the change in T g was insignificant, as alumina acts as an excitation energy sink and reduces the crosslinking density, which in turn decreased the shift in T g towards higher temperature. Similarly, the melting temperature, T m and enthalpy of melting, ??H m of PEEK and PEEK-alumina composites decreased on account of radiation owing to the restriction of chain mobility and disordering of structures caused by crosslinks. The decrease in T m and ??H m was more pronounced in pure PEEK and the extent of decrease in T m and ??H m was less for composites. SEM images revealed the formation of micro-cracks and micro-pores in PEEK due to radiation. The SEM image of irradiated PEEK-alumina (25%) composite showed negligible micro-cracks and micro-pores, because of the reinforcing effect of high alumina content in the PEEK matrix which helps in reducing the degradation in the properties of the polymer. Though alumina reduces the degradation of the polymer matrix during irradiation, an optimum level of ceramic fillers only have to be loaded to the polymer to avoid the reduction in toughness.  相似文献   
96.
The deposition rate plays an important role in determining the thickness, stress state, and physical properties of plasma-sprayed coatings. In this article, the effect of the deposition rate on the stress evolution during the deposition (named evolving stress) of yttria-stabilized zirconia coatings was systematically studied by varying the powder feed rate and the robot-scanning speed. The evolving stress during the deposition tends to increase with the increased deposition rate, and this tendency was less significant at a longer spray distance. In some cases, the powder feed rate had more significant influence on the evolving stress than the robot speed. This tendency can be associated with a deviation of a local deposition temperature at a place where sprayed particles are deposited from an average substrate temperature. At a further higher deposition rate, the evolving stress was relieved by introduction of macroscopic vertical cracks as well as horizontal branching cracks.  相似文献   
97.
Polypropylene/Pine apple leaf fiber (PP/PALF)‐reinforced nanocomposites were fabricated using melt blending technique in a twin‐screw extruder (Haake Rheocord 9000). Variation in mechanical properties, crystallization behavior, water absorption, and thermal stability with the addition of nanoclay in PP/PALF composites were investigated. It was observed that the tensile, flexural, and impact properties of PP increase with the increase in fiber loading from 10 to 30 wt %. Composites prepared using 30 wt % PALF and 5 wt % MA‐g‐PP exhibited optimum mechanical performance with an increase in tensile strength to 31%, flexural strength to 45% when compared with virgin PP. Addition of nanoclay results in a further increase in tensile and flexural strength of PP/PALF composites to 20 and 24.3%, which shows intercalated morphology. However, addition of nanoclay does not show any substantial increase in impact strength when compared with PP/PALF composites. Dynamic mechanical analysis tests revealed an increase in storage modulus (E′) and damping factor (tan δ), confirming a strong influence between the fiber/nanoclay and MA‐g‐PP. Differential scanning calorimetry, thermogravimetric analysis thermograms also showed improved thermal properties when compared with the virgin matrix. TEM micrographs also showed few layers of agglomerated clay galleries along with mixed nanomorphology in the nanocomposites. Wide angle X‐ray diffraction studies indicated an increase in d‐spacing from 22.4 Å in Cloisite 20A to 40.1 Å in PP/PALF nanocomposite because of improved intercalated morphology. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   
98.
Withania somnifera is an important medicinal plant, which is used in traditional medicine to cure many diseases. Flavonoids were determined in the extracts of W. somnifera root (WSREt) and leaf (WSLEt). The amounts of total flavonoids found in WSREt and WSLEt were 530 and 520 mg/100 g dry weight (DW), respectively. Hypoglycaemic and hypolipidaemic effects of WSREt and WSLEt were also investigated in alloxan-induced diabetic rats. WSREt and WSLEt and the standard drug glibenclamide were orally administered daily to diabetic rats for eight weeks. After the treatment period, urine sugar, blood glucose, haemoglobin (Hb), glycosylated haemoglobin (HbA1C), liver glycogen, serum and tissues lipids, serum and tissues proteins, liver glucose-6-phosphatase (G6P) and serum enzymes like aspartate transaminase (AST), alanine transaminase (ALT), acid phosphatase (ACP) and alkaline phosphatase (ALP) levels were determined. The levels of urine sugar, blood glucose, HbA1C, G6P, AST, ALT, ACP, ALP, serum lipids except high density lipoprotein-bound cholesterol (HDL-c) and tissues like liver, kidney and heart lipids were significantly (p < 0.05) increased, however Hb, total protein, albumin, albumin:globulin (A:G) ratio, tissues protein and glycogen were significantly (p < 0.05) decreased in alloxan-induced diabetic rats. Treatment of the diabetic rats with WSREt, WSLEt and glibenclamide restored the changes of the above parameters to their normal level after eight weeks of treatment, indicating that WSREt and WSLEt possess hypoglycaemic and hypolipidaemic activities in alloxan-induced diabetes mellitus (DM) rats.  相似文献   
99.
The concept of ‘process maps’ has been utilized to study the fundamentals of process-structure-property relationships in high velocity oxygen fuel (HVOF) sprayed coatings. Ni-20%Cr was chosen as a representative material for metallic alloys. In this paper, integrated experiments including diagnostic studies, splat collection, coating deposition, and property characterization were carried out in an effort to investigate the effects of fuel gas chemistry (fuel/oxygen ratio), total gas flow, and energy input on particle states: particle temperature (T) and velocity (V), coating formation dynamics, and properties. Coatings were deposited on an in situ curvature sensor to study residual stress evolution. The results were reconciled within the framework of process maps linking torch parameters with particle states (1st order map) and relating particle state with deposit properties (2nd order map). A strong influence of particle velocity on induced compressive stresses through peening effect is discussed. The complete tracking of the coating buildup history including particle state, residual stress evolution and deposition temperature, in addition to single splat analysis, allows the interpretation of resultant coating microstructures and properties and enables coating design with desired properties.  相似文献   
100.
Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray’s versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are “passive” protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号