首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   726篇
  免费   43篇
  国内免费   4篇
电工技术   8篇
综合类   2篇
化学工业   264篇
金属工艺   11篇
机械仪表   16篇
建筑科学   10篇
矿业工程   1篇
能源动力   33篇
轻工业   50篇
水利工程   7篇
石油天然气   1篇
无线电   109篇
一般工业技术   136篇
冶金工业   20篇
原子能技术   9篇
自动化技术   96篇
  2024年   4篇
  2023年   16篇
  2022年   20篇
  2021年   42篇
  2020年   30篇
  2019年   27篇
  2018年   41篇
  2017年   30篇
  2016年   38篇
  2015年   23篇
  2014年   31篇
  2013年   60篇
  2012年   42篇
  2011年   62篇
  2010年   36篇
  2009年   29篇
  2008年   36篇
  2007年   14篇
  2006年   22篇
  2005年   14篇
  2004年   9篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   7篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   12篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1989年   4篇
  1987年   2篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   7篇
  1982年   12篇
  1981年   6篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   3篇
  1972年   1篇
  1969年   1篇
排序方式: 共有773条查询结果,搜索用时 365 毫秒
41.
Journal of Mechanical Science and Technology - The Computational fluid dynamics (CFD) based analysis is carried out to investigate the thermal and hydraulic performance of circular rib roughened...  相似文献   
42.
In order to help keep readers up‐to‐date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist the reader, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at ziv.hameiri@unsw.edu.au  相似文献   
43.
Unveiling the underlying mechanisms of properties of functional materials, including the luminescence differences among similar pyrochlores A2B2O7, opens new gateways to select proper hosts for various optoelectronic applications by scientists and engineers. For example, although La2Zr2O7 (LZO) and La2Hf2O7 (LHO) pyrochlores have similar chemical compositional and crystallographic structural features, they demonstrate different luminescence properties both before and after doped with Eu3+ ions. Based on our earlier work, LHO-based nanophosphors display higher photo- and radioluminescence intensity, higher quantum efficiency, and longer excited state lifetime compared to LZO-based nanophosphors. Moreover, under electronic O2−→Zr4+/Hf4+ transition excitation at 306 nm, undoped LHO nanoparticles (NPs) have only violet blue emission, whereas LZO NPs show violet blue and red emissions. In this study, we have combined experimental and density functional theory (DFT) based theoretical calculation to explain the observed results. First, we calculated the density of state (DOS) based on DFT and studied the energetics of ionized oxygen vacancies in the band gaps of LZO and LHO theoretically, which explain their underlying luminescence difference. For Eu3+-doped NPs, we performed emission intensity and lifetime calculations and found that the LHOE NPs have higher host to dopant energy transfer efficiency than the LZOE NPs (59.3% vs 24.6%), which accounts for the optical performance superiority of the former over the latter. Moreover, by corroborating our experimental data with the DFT calculations, we suggest that the Eu3+ doping states in LHO present at exact energy position (both in majority and minority spin components) where oxygen defect states are located unlike those in LZO. Lastly, both the NPs show negligible photobleaching highlighting their potential for bioimaging applications. This current report provides a deeper understanding of the advantages of LHO over LZO as an advanced host for phosphors, scintillators, and fluoroimmunoassays.  相似文献   
44.
The preparation of high‐dielectric poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) composites containing functionalized single‐walled carbon nanotubes (f‐SWCNTs) noncovalently appended with dibutyltindilaurate are reported herein. Transmission electron microscopy and X‐ray photoelectron and Raman spectroscopy confirmed the noncovalent functionalization of the SWCNTs. The SEBS‐f‐SWCNT composites exhibited enhanced mechanical properties as well as a stable and high dielectric constant of approximately 1000 at 1 Hz with rather low dielectric loss at 2 wt% filler content. The significantly enhanced dielectric property originates from the noncovalent functionalization of the SWCNTs that ensures good dispersion of the f‐SWCNTs in the polymer matrix. The f‐SWCNTs also acted as a reinforcing filler, thereby enhancing the mechanical properties of the composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
45.
Resonant tunneling through a 4 nm nanocrystal Ge (nc‐Ge) layer and a 2.4 nm monolayer of Si colloidal quantum dots (QD) is achieved with 0.7 nm amorphous Al2O3 (a‐Al2O3) barriers. The nc‐Ge resonant tunneling diode (RTD) demonstrates a peak‐to‐valley current ratio (PVCR) of 8 and a full width at half maximum (FWHM) of 30 mV at 300 K, the best performance among RTDs based on annealed nanocrystals. The Si QD RTD is first achieved with PVCRs up to 47 and FWHMs as small as 10 mV at room temperature, confirming theoretically expected excellences of 3D carrier confinements. The high performances are partially due to the smooth profile of nc‐Ge layer and the uniform distribution of Si QDs, which reduce the adverse influences of many‐body effects. More importantly, carrier decoherence is avoided in the 0.7 nm a‐Al2O3 barriers thinner than the phase coherence length (≈1.5 nm). Ultrathin a‐Al2O3 also passivates well materials and suppresses leakage currents. Additionally, the interfacial bandgap of ultrathin a‐Al2O3 is found to be similar to the bulk, forming deep potential wells to sharpen transmission curves. This work can be easily extended to other materials, which may enable resonant tunneling in various nanosystems for diverse purposes.  相似文献   
46.
Microgravity, as a different environment, has been shown to affect plant growth and development (Sievers et al. 1996; Sack 1997). In the present study, effects of slow clinorotation (2 rpm) on growth and chlorophyll content in rice (variety: PRH-10) seedlings were investigated. Rice seeds were clinorotated continuously for 3, 5 and 7 days under ambient conditions. Root and shoot lengths and weights of rice seedlings were measured on the third, fifth and seventh day. Chlorophyll was extracted using N, N-Dimethylformamide (DMF). Absorption and fluorescence spectra of chlorophyll were recorded. Chlorophyll a, chlorophyll b and total chlorophyll contents were calculated from absorption spectra using Arnon’s method. Results showed an increase in root and shoot lengths in clinorotated samples. Similar results were obtained for root and shoot weights. Absorption spectra of chlorophyll showed no shift in the absorption peaks. Chlorophyll content was increased in clinorotated samples as compared to the controls. Interestingly, the difference between chlorophyll content in control and clinorotated samples decreased as the number of days of clinorotation increased. Chlorophyll a/b ratio was lowered in clinorotated samples as compared to the controls. These results suggest that slow clinorotation (2 rpm) affects plant growth and chlorophyll content in rice seedlings.  相似文献   
47.
The sheet‐molding process for the production of poly(methyl methacrylate) (PMMA) involves an isothermal batch reactor followed by polymerization in a mold (the latter is referred to as a “sheet reactor”). The temperature at the outer walls of the mold varies with time. In addition, due to finite rates of heat transfer in the viscous reaction mass, spatial temperature gradients are present inside the mold. Further, the volume of the reaction mass also decreases with polymerization. These several physicochemical phenomena are incorporated into the model developed for this process. It was found that the monomer conversion attains high values of near‐unity in most of the inner region in the mold. This is because of the high temperatures there, since the heat generated due to the exothermicity of the polymerization cannot be removed fast enough. However, the temperature of the mold walls has to be increased in the later stages of polymerization so that the material near the outer edges can also attain high conversions of about 98%. This would give PMMA sheets having excellent mechanical strength. The effects of important operating (decision) variables were studied and it was observed that the heat‐transfer resistance in the mold influences the spatial distribution of the temperature, which, in turn, influences the various properties (e.g., monomer conversion, number‐average molecular weight, and polydispersity index) of the product significantly. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1951–1971, 2001  相似文献   
48.
The chemical sensing of nerve gas agents has become an increasingly important goal due to the 1995 terrorist attack in a Tokyo subway as well as national security concerns in regard to world affairs. Chemical detection needs to be sensitive and selective while being facile, portable, and timely. In this paper, a sensing approach using a pyrene imine molecule is presented that is fluorimetric in response. The detection of a chloro‐Sarin surrogate is measured at 5 ppmv in less than 1 second and is highly selective towards halogenated organophosphates. The pyrene imine molecule is incorporated into polystyrene films as well as micrometer and sub‐micrometer fibers. Using both a direct drawing approach and electrospinning, micrometer and nanofibers can be easily manufactured. Applications for functional sensing micrometer and nanofibers are envisioned for optical devices and photonics in addition to solution and airflow sensing devices.  相似文献   
49.
When a sensor network is deployed to detect objects penetrating a protected region, it is not necessary to have every point in the deployment region covered by a sensor. It is enough if the penetrating objects are detected at some point in their trajectory. If a sensor network guarantees that every penetrating object will be detected by at least k distinct sensors before it crosses the barrier of wireless sensors, we say the network provides k-barrier coverage. In this paper, we develop theoretical foundations for k-barrier coverage. We propose efficient algorithms using which one can quickly determine, after deploying the sensors, whether the deployment region is k-barrier covered. Next, we establish the optimal deployment pattern to achieve k-barrier coverage when deploying sensors deterministically. Finally, we consider barrier coverage with high probability when sensors are deployed randomly. The major challenge, when dealing with probabilistic barrier coverage, is to derive critical conditions using which one can compute the minimum number of sensors needed to ensure barrier coverage with high probability. Deriving critical conditions for k-barrier coverage is, however, still an open problem. We derive critical conditions for a weaker notion of barrier coverage, called weak k-barrier coverage.  相似文献   
50.
In the fabrication industry, metal inert gas (MIG) welding is a very important process and Fe410WA is the most commonly used material for the manufacturing of fabricated structures. During the preparation of butt welded joints, angular distortion is a major concern. Angular distortion can be minimized by optimizing the input parameters. In this paper, a study of the optimization of controllable input parameters such as current, voltage and gas flow rate by using the Taguchi method is performed. Butt welding samples were prepared by using three levels and three factors. An orthogonal array of nine trials is considered for the design of the experiment. After measuring the distortion angle, observed readings were verified by using analysis of variance (ANOVA) technique and it was found that the p-values were less than 0.05. Theoretical calculations were performed to optimize the process parameters to achieve the minimum distortion angle. A confirmation test was taken for validation purposes and to confirm the result.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号