首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2720篇
  免费   231篇
  国内免费   5篇
电工技术   14篇
综合类   2篇
化学工业   827篇
金属工艺   18篇
机械仪表   56篇
建筑科学   132篇
能源动力   56篇
轻工业   584篇
水利工程   37篇
石油天然气   9篇
无线电   135篇
一般工业技术   437篇
冶金工业   307篇
原子能技术   8篇
自动化技术   334篇
  2024年   9篇
  2023年   58篇
  2022年   140篇
  2021年   256篇
  2020年   106篇
  2019年   118篇
  2018年   139篇
  2017年   111篇
  2016年   107篇
  2015年   116篇
  2014年   113篇
  2013年   197篇
  2012年   172篇
  2011年   220篇
  2010年   125篇
  2009年   145篇
  2008年   124篇
  2007年   124篇
  2006年   88篇
  2005年   72篇
  2004年   56篇
  2003年   51篇
  2002年   39篇
  2001年   12篇
  2000年   18篇
  1999年   24篇
  1998年   19篇
  1997年   25篇
  1996年   15篇
  1995年   11篇
  1994年   9篇
  1993年   9篇
  1992年   11篇
  1990年   8篇
  1989年   8篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   5篇
  1983年   8篇
  1982年   7篇
  1981年   4篇
  1977年   7篇
  1976年   4篇
  1975年   3篇
  1973年   4篇
  1972年   3篇
  1964年   3篇
  1958年   2篇
排序方式: 共有2956条查询结果,搜索用时 15 毫秒
111.
Thermal polycondensation of the potassium salt of N‐methylchloroacetyl‐6‐aminohexanoic acid (LAHK) was found to be effective in the preparation of a new poly(ester amide) based on lactic acid units with a high yield and a moderate molecular weight. The reaction started in the solid state and proceeded through the formation of potassium chloride salt as the driving force. The use of a monomer having an amide linkage diminished the secondary reactions previously found in the synthesis of polylactide from 2‐halogenopropionates. The polymerization of potassium salt of N‐chloroacetyl‐6‐aminohexanoic acid (GAHK) took place in a similar temperature range as that of the 2‐chloropropionyl derivative; in this way, it was possible to conduct the copolymerization processes. The polymerization kinetics of LAHK and its mixture with GAHK was studied by Fourier transform infrared spectroscopy. The bulk polycondensation reaction was faster for GAHK than for LAHK, but the kinetic differences were not significant enough to prevent copolymerization at a temperature close to 160°C. Therefore, new degradable materials with tuned properties according to the glycolic acid/lactic acid content were obtained. 1H‐NMR spectroscopy was useful for following the time evolution of the copolymerization process and for determining the final composition. Calorimetric data showed that all of the samples were thermally stable and that decreases in the melting temperature and enthalpy were observed at intermediate compositions. The existence of an eutectic point became proof that effective copolymerization was achieved in the thermal polycondensation process. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43197.  相似文献   
112.
In this work platelet lysate (PL) and adipose‐derived mesenchymal stromal cells (ASCs) seeded on nonwoven fibroin mats were in vitro and in vivo evaluated for tissue regenerative applications. Nonwoven mats obtained by a large scale water entanglement technique were characterized for their physico‐chemical properties. Results indicated a high purity of fibroin fibers, their stability after sterilization process and appropriate technological properties suitable for tissue engineering. Moreover, the scaffolds in vitro supported adhesion and migration of ASCs and the presence of PL improved the cell proliferation. The products were then applied on epithelial/dermal wounds carried out on the dorsal surface of rabbit: the skin reparative process was solved in 9 days, with a completely restitutio ad integrum of the epithelium in animals treated with PL alone; ASCs did not further improve the wound healing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42942.  相似文献   
113.
Supercritical fluid extraction (SFE) is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P), temperature (T), and co-solvent (CoS), four treatments (T) were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min), followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min). Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0), followed by linoleic acid (C18:2ω6c), α-linolenic acid (C18:3ω3) and stearic acid (C18:0) differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.  相似文献   
114.
Cu–Ni nanoparticles (NPs) thin films were prepared by Direct Current (DC) magnetron sputtering with Cu and Ni targets. The products were used as catalysts for Thermal CVD (TCVD) growing of carbon nanotubes (CNTs) from acetylene gas at 825°C. In order to characterize the nano catalysts, X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) and to study the synthesized CNTs Scanning Electron Microscopy (SEM) and Raman Spectroscopy were applied. A remarkable CNT grown on the sub-surface of catalyst layer compared to its top is deduced from SEM images. Despite the poor catalytic activity of the top-surface, these considerations led us to conclude more catalytic activity of the sub-surface.  相似文献   
115.
The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4–254.2 nm with PDI ranging between 0.279–0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target.  相似文献   
116.
The nitric oxide–guanylyl cyclase-1–cyclic guanylate monophosphate (NO–GC-1–cGMP) pathway is integral to the control of vascular tone and morphology. Mice lacking the alpha catalytic domain of guanylate cyclase (GC1−/−) develop retinal ganglion cell (RGC) degeneration with age, with only modest fluctuations in intraocular pressure (IOP). Increasing the bioavailability of cGMP in GC1−/− mice prevents neurodegeneration independently of IOP, suggesting alternative mechanisms of retinal neurodegeneration. In continuation to these studies, we explored the hypothesis that dysfunctional cGMP signaling leads to changes in the neurovascular unit that may contribute to RGC degeneration. We assessed retinal vasculature and astrocyte morphology in young and aged GC1−/− and wild type mice. GC1−/− mice exhibit increased peripheral retinal vessel dilation and shorter retinal vessel branching with increasing age compared to Wt mice. Astrocyte cell morphology is aberrant, and glial fibrillary acidic protein (GFAP) density is increased in young and aged GC1−/− mice, with areas of dense astrocyte matting around blood vessels. Our results suggest that proper cGMP signaling is essential to retinal vessel morphology with increasing age. Vascular changed are preceded by alterations in astrocyte morphology which may together contribute to retinal neurodegeneration and loss of visual acuity observed in GC1−/− mice.  相似文献   
117.
The Hedgehog (Hh) pathway is essential for the embryonic development and homeostatic maintenance of many adult tissues and organs. It has also been associated with some functions of the innate and adaptive immune system. However, its involvement in the immune response has not been well determined. Here we study the role of Hh signalling in the modulation of the immune response by using the Ptch-1-LacZ+/− mouse model (hereinafter referred to as ptch+/−), in which the hemizygous inactivation of Patched-1, the Hh receptor gene, causes the constitutive activation of Hh response genes. The in vitro TCR stimulation of spleen and lymph node (LN) T cells showed increased levels of Th2 cytokines (IL-4 and IL-10) in ptch+/−cells compared to control cells from wild-type (wt) littermates, suggesting that the Th2 phenotype is favoured by Hh pathway activation. In addition, CD4+ cells secreted less IL-17, and the establishment of the Th1 phenotype was impaired in ptch+/− mice. Consistently, in response to an inflammatory challenge by the induction of experimental autoimmune encephalomyelitis (EAE), ptch+/− mice showed milder clinical scores and more minor spinal cord damage than wt mice. These results demonstrate a role for the Hh/ptch pathway in immune response modulation and highlight the usefulness of the ptch+/− mouse model for the study of T-cell-mediated diseases and for the search for new therapeutic strategies in inflammatory diseases.  相似文献   
118.
Herbal remedies are increasing in popularity as treatments for metabolic conditions such as obesity and Type 2 Diabetes. One potential therapeutic option is fenugreek seeds (Trigonella foenum-graecum), which have been used for treating high cholesterol and Type 2 diabetes. A proposed mechanism for these benefits is through alterations in the microbiome, which impact mammalian host metabolic function. This study used untargeted metabolomics to investigate the fenugreek-induced alterations in the intestinal, liver, and serum profiles of mice fed either a 60% high-fat or low-fat control diet each with or without fenugreek supplementation (2% w/w) for 14 weeks. Metagenomic analyses of intestinal contents found significant alterations in the relative composition of the gut microbiome resulting from fenugreek supplementation. Specifically, Verrucomicrobia, a phylum containing beneficial bacteria which are correlated with health benefits, increased in relative abundance with fenugreek. Metabolomics partial least squares discriminant analysis revealed substantial fenugreek-induced changes in the large intestines. However, it was observed that while the magnitude of changes was less, significant modifications were present in the liver tissues resulting from fenugreek supplementation. Further analyses revealed metabolic processes affected by fenugreek and showed broad ranging impacts in multiple pathways, including carnitine biosynthesis, cholesterol and bile acid metabolism, and arginine biosynthesis. These pathways may play important roles in the beneficial effects of fenugreek.  相似文献   
119.
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号