首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2892篇
  免费   187篇
  国内免费   2篇
电工技术   14篇
综合类   2篇
化学工业   782篇
金属工艺   14篇
机械仪表   22篇
建筑科学   205篇
矿业工程   8篇
能源动力   51篇
轻工业   381篇
水利工程   43篇
石油天然气   5篇
无线电   172篇
一般工业技术   440篇
冶金工业   574篇
原子能技术   6篇
自动化技术   362篇
  2024年   7篇
  2023年   55篇
  2022年   111篇
  2021年   179篇
  2020年   91篇
  2019年   111篇
  2018年   128篇
  2017年   96篇
  2016年   113篇
  2015年   68篇
  2014年   103篇
  2013年   184篇
  2012年   157篇
  2011年   244篇
  2010年   165篇
  2009年   183篇
  2008年   159篇
  2007年   153篇
  2006年   122篇
  2005年   77篇
  2004年   89篇
  2003年   76篇
  2002年   47篇
  2001年   40篇
  2000年   37篇
  1999年   25篇
  1998年   21篇
  1997年   19篇
  1996年   22篇
  1995年   23篇
  1994年   16篇
  1993年   12篇
  1992年   9篇
  1991年   6篇
  1990年   14篇
  1989年   13篇
  1988年   8篇
  1987年   5篇
  1986年   6篇
  1985年   5篇
  1984年   4篇
  1979年   4篇
  1976年   4篇
  1974年   4篇
  1947年   8篇
  1946年   5篇
  1945年   6篇
  1944年   11篇
  1943年   7篇
  1942年   10篇
排序方式: 共有3081条查询结果,搜索用时 15 毫秒
991.
The enzymes glucose oxidase and transglutaminase are frequently used to improve the breadmaking performance of wheat flours, as they have the ability to considerably alter the viscoelastic nature of the gluten network. To evaluate a flour’s breadmaking performance, rheological tests offer an attractive framework. In this study, the rheological impact of adding glucose oxidase or transglutaminase to wheat flour dough is investigated by means of linear oscillatory shear tests, creep-recovery shear tests and startup extensional tests. The former tests reveal that the enzymes render the dough stiffer and enhance its elastic character, until saturation is reached. In the breadmaking process, the use of excessive amounts of enzyme is known to be counterproductive. The strain-hardening index clearly reveals this overcross-linking effect. Besides enzymes, the gluten network can also be reinforced by adding supplementary gluten, which was indeed found to enhance the extent of strain-hardening.  相似文献   
992.
Emissions from gasoline and diesel engines vary on time scales including diurnal, weekly, and decadal. Temporal patterns differ for these two engine types that are used predominantly for passenger travel and goods movement, respectively. Rapid growth in diesel fuel use and decreasing NOx emission rates from gasoline engines have led to altered emission profiles. During the 1990s, on-road use of diesel fuel grew 3 times faster than gasoline. Over the same time period, the NOx emission rate from gasoline engines in California was reduced by a factor of approximately 2, while the NOx emission rate from diesel engines decreased only slightly. Diesel engines therefore grew in both relative and absolute terms as a source of NOx, accounting for about half of all on-road NO, emissions as of 2000. Diesel truck emissions decrease by 60-80% on weekends. Counterintuitive responses to these emission changes are seen in measured concentrations of ozone. In contrast, elemental carbon (EC) concentrations decrease on weekends as expected. Weekly and diurnal patterns in diesel truck activity contribute to variability in the ratio of organic carbon (OC) to EC in primary source emissions, and this could be a source of bias in assessments of the importance of secondary organic aerosol.  相似文献   
993.
994.
Little is known aboutthe impact manufactured nanoparticles will have on aquatic organisms. Previously, we demonstrated that toxicity differs with nanoparticle type and preparation and observed behavioral changes upon exposure to the more lethal nanoparticle suspensions. In this experiment, we quantified these behavioral and physiological responses of Daphnia magna at sublethal nanoparticle concentrations. Titanium dioxide (TiO2) and fullerenes (nano-C60) were chosen for their potential use in technology. Other studies suggest that addition of functional groups to particles can affect their toxicity to cell cultures, but it is unknown if the same is true at the whole organism level. Therefore, a fullerene derivative, C60HxC70Hx, was also used to examine how functional groups affect Daphnia response. Using a high-speed camera, we quantified several behavior and physiological parameters including hopping frequency, feeding appendage and postabdominal curling movement, and heart rate. Nano-C60 was the only suspension to cause a significant change in heart rate. Exposure to both nano-C60 and C60HxC70Hx suspensions caused hopping frequency and appendage movement to increase. These results are associated with increased risk of predation and reproductive decline. They indicate that certain nanoparticle types may have impacts on population and food web dynamics in aquatic systems.  相似文献   
995.
996.
Mastitis, inflammation of the mammary gland, is an important cause of disease, mortality, and production losses in dairy and meat sheep. Mastitis is commonly caused by intramammary infection with bacteria, which can be detected by bacterial culture or PCR. PathoProof (Thermo Fisher Scientific Ltd., Vantaa, Finland) is a commercially available real-time PCR system for the detection of bovine mastitis pathogens. Sheep differ from cattle in the bacterial species or bacterial strains that cause mastitis, as well as in the composition of their milk. The aim of this study was to evaluate whether the PathoProof system was suitable for detection of mastitis pathogens in sheep milk. Milk samples were collected aseptically from 219 udder halves of 113 clinically healthy ewes in a single flock. Aliquots were used for bacteriological culture and real-time PCR-based detection of bacteria. For species identified by culture, the diagnosis was confirmed by species-specific conventional PCR or by sequencing of a housekeeping gene. The majority of samples were negative by culture (74.4% of 219 samples) and real-time PCR (82.3% of 192 samples). Agreement was observed for 138 of 192 samples. Thirty-four samples were positive by culture only, mostly due to presence of species that are not covered by primers in the PCR system (e.g., Mannheimia spp.). Two samples were positive for Streptococcus uberis by culture but not by PCR directly from the milk samples. This was not due to inability of the PCR primers to amplify ovine Streptococcus uberis, as diluted DNA extracts from the same samples and DNA extracts from the bacterial isolates were positive by real-time PCR. For samples containing Staphylococcus spp., 11 samples were positive by culture and PCR, 9 by culture only, and 20 by PCR only. Samples that were negative by either method had lower bacterial load than samples that were positive for both methods, whereas no clear relation with species identity was observed. This study provides proof of principle that real-time PCR can be used for detection of mastitis pathogens in ovine milk. Routine use in sheep may require inclusion of primer sets for sheep-specific mastitis pathogens.  相似文献   
997.
Drinking water—a vital part of our ecosystem—is often exposed to contamination through industrialization. Halogenated compounds, for example, trihalomethanes (THMs), are among the most common contaminants, being by-products of water chlorination/treatment. The carcinogenic and health effects of these compounds have motivated scientists to work on the accurate detection of THMs down to 80 ppb in treated water. Here, a superhydrophobic syndiotactic polypropylene (sPP) nanofiber mat is used to preconcentrate THMs in environmental water samples, and subsequently, detect them using a well-known colorimetric reaction chemistry. The reaction chemistry yields a visible red/pink chromophore under visible light absorption. This reaction occurs when the preconcentrated THM becomes trapped in the liquid phase of the reaction chemistry, on the surface of the sPP fibers. This fiber mat is electrospun in a way which results in a large water contact angle >150°—allowing the working sensitivity of the reaction chemistry to be heightened and lowering the detection limit. The resulting color change can be analyzed via a simple quantitative color intensity analysis utilizing widely-available software, measuring the THM content in water as low as 0.8 ppb. This cost-effective and selective method was incorporated into a portable device, enabling on-site users to evaluate the quality of drinking water.  相似文献   
998.
As global populations continue to increase, the pressure on water supplies will inevitably intensify. Consequently the international need for more efficient and cost effective water remediation technologies will also rise. The introduction of nano‐technology into the industry may represent a significant advancement and zero‐valent iron nano‐particles (INPs) have been thoroughly studied for potential remediation applications. However, the application of water dispersed INP suspensions is limited and somewhat contentious on the grounds of safety, whilst INP reaction mechanisms, transport properties and ecotoxicity are areas still under investigation. Theoretically, the development of nano‐composites containing INPs to overcome these issues provides the logical next step for developing nano‐materials that are better suited to wide application across the water industry. This review provides an overview of the range of static, bulk nano‐composites containing INPs being developed, whilst highlighting the limitations of individual solutions, overall classes of technology, and lack of comparative testing for nano‐composites. The review discusses what further developments are needed to optimize nano‐composite water remediation systems to subsequently achieve commercial maturity.  相似文献   
999.
1000.
The integration of fully printed transistors on low cost paper substrates compatible with roll‐to‐roll processes is demonstrated here. Printed electronics promises to enable a range of technologies on paper including printed sensors, RF tags, and displays. However, progress has been slow due to the paper roughness and ink absorption. This is solved here by employing gravure printing to print local smoothing pads that also act as an absorption barrier. This innovative local smoothing process retains desirable paper properties such as foldability, breathability, and biodegradability outside of electronically active areas. Atomic force microscopy measurements show significant improvements in roughness. The polymer ink and printing parameters are optimized to minimize ink absorption and printing artifacts when printing the smoothing layer. Organic thin film transistors (OTFT) are fabricated on top of this locally smoothed paper. OTFTs exhibit performance on par with previously reported printed transistors on plastic utilizing the same materials system (pBTTT semiconductor, poly‐4‐vinylphenol dielectric). OTFTs deliver saturation mobility approaching 0.1 cm2V–1s–1 and on‐off‐ratio of 3.2 × 104. This attests to the quality of the local smoothing, and points to a promising path for realizing electronics on paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号