首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3014篇
  免费   109篇
  国内免费   13篇
电工技术   169篇
综合类   3篇
化学工业   828篇
金属工艺   71篇
机械仪表   86篇
建筑科学   84篇
能源动力   114篇
轻工业   359篇
水利工程   12篇
石油天然气   1篇
无线电   201篇
一般工业技术   530篇
冶金工业   277篇
原子能技术   112篇
自动化技术   289篇
  2023年   24篇
  2022年   47篇
  2021年   87篇
  2020年   25篇
  2019年   37篇
  2018年   77篇
  2017年   59篇
  2016年   103篇
  2015年   54篇
  2014年   96篇
  2013年   180篇
  2012年   160篇
  2011年   191篇
  2010年   153篇
  2009年   167篇
  2008年   180篇
  2007年   137篇
  2006年   116篇
  2005年   122篇
  2004年   101篇
  2003年   88篇
  2002年   88篇
  2001年   62篇
  2000年   42篇
  1999年   53篇
  1998年   123篇
  1997年   92篇
  1996年   60篇
  1995年   43篇
  1994年   47篇
  1993年   42篇
  1992年   21篇
  1991年   23篇
  1990年   18篇
  1989年   29篇
  1988年   15篇
  1987年   17篇
  1986年   20篇
  1985年   26篇
  1984年   15篇
  1983年   21篇
  1982年   6篇
  1981年   7篇
  1980年   6篇
  1979年   6篇
  1978年   6篇
  1977年   13篇
  1976年   8篇
  1975年   5篇
  1974年   7篇
排序方式: 共有3136条查询结果,搜索用时 343 毫秒
111.
Mulberry leaf extracts were generated using four concentrations of ethanol (50%, 60%, 70%, and 95% v/v). A 60% ethanolic mulberry leaf extract (60E) yielded a high total phenolic content (TPC) and antioxidant activity using 1, 1‐diphenyl‐2‐picrylhydrazyl (DPPH) radical scavenging and a ferric reducing antioxidant power (FRAP) assay. Coating materials were derived using a combination of soy protein isolates (SPI) and low methoxyl (LM) pectin in a 1:1 ratio. The effect of various parameters on microencapsulation, such as pH (3.5, 4.0, and 4.5) and the concentration of coating materials (2.5, 5.0 and 7.5% w/v), was studied. Microcapsules produced using 60E as a core material at pH 4.0 with 7.5% of coating material showed a high encapsulation yield, encapsulation efficiency, TPC and antioxidant activity.  相似文献   
112.
Although curcumin is considered to have various therapeutic effects, its use as a functional food or supplement is restricted owing to its low water solubility and bioavailability. To increase the solubility of curcumin in water, the use of polyvinylpyrrolidone (PVP) and vinylpyrrolidone-vinyl acetate copolymers with a pyrrolidone skeleton was noted to be promising. In particular, the bi-component formulations of curcumin/PVP prepared through spray drying exhibited an amorphous state in powder X-ray diffraction observations and temporally increased the apparent solubility of curcumin to over 5000 times that of untreated curcumin; nevertheless, after 24 h, the solubility decreased owing to the unstable supersaturated state of curcumin. The addition of α-cyclodextrin (α-CyD) in the bi-component curcumin/PVP formulation helped maintain the supersaturated state of curcumin, whereas the addition of β- and γ-CyD led to the collapse of the supersaturated state. The addition of α-CyD can likely help inhibit the nucleation and crystal growth of curcumin, through the interaction among the solubilized units of curcumin/PVP and α-CyD.  相似文献   
113.
114.
We examined the effect of incorporating high-volume fly ash on the atomic arrangement and interatomic deformation behavior of calcium silicate hydrates in tricalcium silicate paste upon exposure to external forces. The interatomic structural changes and strains under compressive load were assessed using synchrotron in situ high-energy X-ray scattering-based atomic pair distribution function analysis. Three different types of strains, which were (a) macroscopic strains from gauges on the surfaces of specimen, (b) strains in a reciprocal space (Bragg peak shift), and (c) strains in real space (PDF peak shift), were compared to each other. All monitored and calculated strains for tricalcium silicate-fly ash (50 wt% fly ash) paste were compared with the counterparts of the pure tricalcium silicate paste. Pair distribution function analysis in the range of r < 10 Å indicated that the atomic arrangement of tricalcium silicate-fly ash was similar to that of synthetic calcium silicate hydrates followed by that of pure tricalcium silicate paste. Moreover, the pair distribution function refinement results revealed that the calcium silicate hydrate structure in tricalcium silicate-fly ash paste was similar to tobermorite 11 Å, unlike that in pure tricalcium silicate paste. The interatomic strain of tricalcium silicate-fly ash in the real space (r < 20 Å) was smaller than that of tricalcium silicate under compression, which suggested that the incompressibility of calcium silicate hydrates at atomistic scale was enhanced by the incorporation of fly ash into it. This was likely to be caused by the increased silicate polymerization of calcium silicate hydrates, which was attributed to the increase in the amount of silicate in their structure via the addition of fly ash.  相似文献   
115.
Abstract: Sorghum bagasse samples from two sets (n6 and bmr6; n18 and bmr18) of wild-type and corresponding “brown midrib” (bmr) mutant strains of sweet sorghum were evaluated as the feedstock for fermentable sugar recovery via the calcium capturing by carbonation (CaCCO) process, which involves Ca(OH)2 pretreatment of bagasse with subsequent neutralization with CO2 for enzymatic saccharification. Saccharification tests under various pretreatment conditions of the CaCCO process at different Ca(OH)2 concentrations, temperatures or residence periods indicated that bmr strains are more sensitive to the pretreatment than their counterparts are. It is expected that variant bmr6 is more suitable for glucose recovery than its wild-type counterpart because of the higher glucan content and better glucose recovery with less severe pretreatment. Meanwhile, bmr18showed higher scores of glucose recovery than its counterpart did, only at low pretreatment severity, and did not yield higher sugar recovery under the more severe conditions. The trend was similar to that of xylose recovery data from the two bmr strains. The advantages of bmr strains were also proven by means of simultaneous saccharification and fermentation of CaCCO-pretreated bagasse samples by pentose-fermenting yeast strain Candida shehatae Cs 4R. The amounts needed for production of 1 L of ethanol from n6, bmr6, n18, and bmr18samples were estimated as 4.11, 3.46, 4.03, and 3.95 kg, respectively. The bmr strains seem to have excellent compatibility with the CaCCO process for ethanol production, and it is expected that integrated research from the feedstock to bioprocess may result in breakthroughs for commercialization.  相似文献   
116.
117.
Sweet enhancing effect of neohesperidin dihydrochalcone (NHDC) or cyclamate has been reported to be synergistic in human sensory tests. However, little is known about whether these synergisms are caused by the mechanism mediated by the human sweet-taste receptor. Here, we examined the sweetness intensity of sweet tastant mixtures by measuring the responses of cultured cells stably expressing the human sweet-taste receptor. The results showed that the cell response to sucrose was synergistically potentiated by the addition of NHDC or cyclamate. Moreover, a point mutation in the transmembrane domain of hT1R3 almost completely eliminated the enhancing effects of NHDC and cyclamate. These results suggest that ligand–receptor interactions in the transmembrane domain of hT1R3 are necessary for NHDC and cyclamate to elicit the synergistic potentiation of the receptor activation. Our results may provide the foundation of a molecular basis for receptor-based synergisms of sweet tastes in mixtures of diverse sweet substances.  相似文献   
118.
119.
In-situ and transient visualizations of the packing structure of a hydrogen storage alloy bed are carried out using an X-ray computed tomography (CT) system. The packing structure is clearly observed on the microscale using the CT system. When the alloy bed is subjected to hydrogen absorption–desorption cycles, the pulverization progresses from the lower to the upper regions of the bed. After several hydrogen absorption–desorption cycles, the packing structure in the lower region of the bed changes and the microstructural void decreases slightly. Based on these results, we propose a pulverization mechanism of the packed bed in which the friction between particles affects the pulverization process.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号