首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学工业   13篇
  2003年   7篇
  2002年   1篇
  2001年   2篇
  1999年   2篇
  1993年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
11.
The rheological properties, morphology, and oil resistance in natural rubber and nitrile‐butadiene rubber (NR/NBR) blends are investigated as functions of the blending conditions. It is found that the Mooney viscosity of the blends depends more strongly on the blending time than the rotor speed. The size of the NR dispersed phase is approximately independent of the rotor speed, but it decreases with increasing blending time up to 25 min. With a further increase in the blending time the NR dispersed phase size decreases. The results for the relative tensile strength, which is an indicator of oil resistance, are in agreement with those of the blend morphology, indicating that the oil resistance in a 20/80 NR/NBR blend strongly depends on the phase morphology of the blend. The smaller the size of NR dispersed phase, the higher the blend resistance to oil. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1232–1237, 2001  相似文献   
12.
The phase morphology and oil resistance of 20/80 NR/NBR blends filled with different types of fillers and copolymers were investigated. In the case of filler effect, N220, N330, and N660 carbon blacks with different particle sizes were used. Additionally, the blends filled with nonblack‐reinforcing fillers, that is, precipitated and silane‐treated silica, were investigated. To study the compatibilization effect, maleated ethylene propylene diene rubber (EPDM‐g‐MA) and maleated ethylene octene copolymer (EOR‐g‐MA) were added to the blends. The results revealed that the addition of filler, either carbon black or silica, to the blend caused a drastic decrease in NR dispersed phase size. Carbon blacks with different particle sizes did not produce any significant difference in NR dispersed phase size under the optical microscope. Silica‐filled blends showed lower resistance to oil than did the carbon black–filled blends. In addition, it was determined that neither EOR‐g‐MA nor EPDM‐g‐MA could act as a compatibilizer for the blend system studied. The oil resistance of the blends with EPDM‐g‐MA is strongly affected by the overall polarity of the blend. In the case of EOR‐g‐MA, the oil resistance of the blends is significantly governed by both overall polarity of the blend and phase morphology. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1156–1162, 2003  相似文献   
13.
An in-situ composite film of a thermotropic liquid crystalline polymer (LC3000)/polypropylene (TLCP/PP) was produced using the extrusion cast film technique. The compatibilizing effect of thermoplastic elastomers, styrene-ethylene butylene-styrene (SEBS), maleic anhydride grafted SEBS (MA-SEBS), and maleic anhydride grafted polypropylene (MA-PP) on the mechanical properties and morphology of the TLCP/PP composite films was investigated. It was found that SEBS provided a higher value of tensile modulus than MA-SEBS, which in turn was higher than MA-PP, despite the expected stronger interaction between the MA chain and TLCP. The observation of the morphology under optical and scanning electron microscopes suggested that all three compatibilizers helped improve the dispersion of the TLCP fibers and increased the fiber aspect ratio to a different extent. The fractured surface of the specimens showed more fiber breakage than pull-out when a compatibilizer was added, which suggested the improvement of interfacial adhesion. The surface roughness of fibers with an added elastomeric compatibilizermay also provide mechanical interlocking at the interface. It is suggested that the increase in the viscosity ratio of TLCP/PP due to the added elastomeric compatibilizer, SEBS and MA-SEBS, compared with the thermoplastic compatibilizer, MA-PP, is more effective in improving the composite mechanical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号