首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40182篇
  免费   13048篇
  国内免费   18篇
电工技术   754篇
综合类   19篇
化学工业   17146篇
金属工艺   382篇
机械仪表   769篇
建筑科学   1701篇
矿业工程   6篇
能源动力   853篇
轻工业   7082篇
水利工程   285篇
石油天然气   55篇
武器工业   1篇
无线电   7172篇
一般工业技术   11679篇
冶金工业   773篇
原子能技术   12篇
自动化技术   4559篇
  2023年   14篇
  2022年   38篇
  2021年   247篇
  2020年   1439篇
  2019年   3182篇
  2018年   3109篇
  2017年   3444篇
  2016年   3902篇
  2015年   3979篇
  2014年   3901篇
  2013年   5029篇
  2012年   2747篇
  2011年   2394篇
  2010年   2683篇
  2009年   2566篇
  2008年   2132篇
  2007年   1934篇
  2006年   1726篇
  2005年   1420篇
  2004年   1370篇
  2003年   1349篇
  2002年   1287篇
  2001年   1123篇
  2000年   1085篇
  1999年   476篇
  1998年   116篇
  1997年   106篇
  1996年   57篇
  1995年   43篇
  1994年   43篇
  1993年   50篇
  1992年   25篇
  1991年   26篇
  1990年   27篇
  1989年   16篇
  1988年   18篇
  1987年   14篇
  1986年   19篇
  1985年   7篇
  1984年   10篇
  1983年   9篇
  1982年   10篇
  1981年   8篇
  1980年   9篇
  1978年   4篇
  1977年   9篇
  1976年   12篇
  1974年   5篇
  1973年   8篇
  1970年   4篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
21.
22.
Previous work has shown that the enzymatic hydrolysis of sugarcane bagasse could be greatly enhanced by peracetic acid (PAA) pretreatment. There are several factors affecting the enzymatic digestibility of the biomass, including lignin and hemicelluloses content, cellulose crystallinity, acetyl group content, accessible surface area and so on. The objective of this work is to analyze the mechanism of the enhancement of enzymatic digestibility caused by PAA pretreatment. Delignification resulted in an increase of the surface area and reduction of the irreversible absorption of cellulase, which helped to increase the enzymatic digestibility. The Fourier transform infrared (FTIR) spectrum showed that the absorption peaks of aromatic skeletal vibrations were weakened or disappeared after PAA pretreatment. However, the infrared crystallization index (N.O'KI) was increased. X‐ray diffraction (XRD) analysis indicated that the crystallinity of PAA‐treated samples was increased owing to the partial removal of amorphous lignin and hemicelluloses and probable physical change of cellulose. The effect of acetyl group content on enzymatic digestibility is negligible compared with the degree of delignification and crystallinity. The results indicate that enhancement of enzymatic digestibility of sugarcane bagasse by PAA pretreatment is achieved mainly by delignification and an increase in the surface area and exposure of cellulose fibers. Copyright © 2008 Society of Chemical Industry  相似文献   
23.
Using the surfactant CTMABr (cetyltrimethyl ammonium bromide) and cerium(IV) sulfate, mesoporous Ce-MCM-41 molecular sieves were produced under a hydrothermal condition with various surfactant/silica (surfactant/Si) and silica/cerium (Si/Ce) ratios. Changes to the structural traits caused by changing the molar ratios of both surfactant/Si and Si/Ce were investigated. XRD (X-ray diffraction), FT-IR (fourier transform infrared spectroscopy), and SEM (scanning electro microscopy) were used for the characterization of prepared mesoporous samples. Among the tested molar ratios, surfactant/Si ratio of 0.5 and 0.2 showed highest values of d1 0 0 and intensity, respectively, for the Si-MCM-41. XRD analysis also identified a quintessential hexagonal structure of Ce-MCM-41 for the Si/Ce molar ratio higher than 40 (maintaining the surfactant/Si ratio at 0.2). When cerium content was increased to have the Si/Ce molar ratio of 20, the hexagonal structure of Ce-MCM-41 was collapsed due to the structural stress of substituted cerium. FT-IR results confirmed calcination of Ce-MCM-41 and the incorporation of Ce4+ ions of cerium sulfate into the silica surface with proper removal of the surfactant. Rod-like shape with rounded edges of the prepared Ce-MCM-41 samples was identified by SEM. These results suggest surfactant/Si ratio of 0.2 and Si/Ce ratio of 40 for the production of Ce-MCM-41 with the highest level of crystallinity.  相似文献   
24.
BACKGROUND: Environmental contamination by nitroaromatic compounds such as 2,4,6‐trinitrotoluene (TNT), hexahydro‐1,3,5‐trinitro‐1,3,5‐s‐triazine (RDX), atrazine, and/or simazine (TRAS) generated as waste from military and agricultural activities is a serious worldwide problem. Microbiological treatment of these compounds is an attractive method because many explosives and herbicides are biodegradable and the process can be made cost‐effective. We explored the feasibility of using cultures of Pseudomonas putida HK‐6 for simultaneous degradation of TRAS with the aim of microbial application in wastewater treatment in bench‐scale bioreactors. RESULTS: Experiments were conducted to study the effects of supplemental carbons, nitrogens, and Tween‐80 on the degradation of Ps. putida HK‐6 in media containing TRAS as target substrate(s). The most effective TRAS degradation was shown in the presence of molasses. Addition of nitrogen sources produced a delayed effect for the target substrate(s). Tween‐80 enhanced the degradation of target substrate(s). Simultaneous degradation of these compounds proceeded to completion within the given period. CONCLUSIONS: Ps. putida HK‐6 was capable of growth with TRAS, and the effects of supplements on TRAS degradation and simultaneous TRAS degradation were evaluated in bench‐scale bioreactors. The results of this study have practical applications in the processes of industrial waste stream treatment where the disposal of TRAS may be problematic. Copyright © 2008 Society of Chemical Industry  相似文献   
25.
Polyetherimide (PEI) substrate for next‐generation high density optical data storage is fabricated and characterized. Cover‐layer incident or first‐surface recording configurations do not require optical properties of the substrate, which are the prerequisite conditions for the conventional material of polycarbonate (PC). Instead of the optical properties, good mechanical properties with a sufficient transcribability are required. Even though PEI has higher glass transition temperature than that of PC, a microscopic transcribability of PEI is comparable with PC by laminating a thermal insulation layer on the backside of a stamper to retard the heat flow. A macroscopic warpage of PEI substrate is smaller than that of PC substrates, which reduces tilt and servo burden. The lowest critical speed coupled with the flutter of PEI substrate is larger than that of PC substrate because of the mechanical properties of PEI. POLYM. ENG. SCI., 48:97–101, 2008. © 2007 Society of Plastics Engineers  相似文献   
26.
This work was aimed at studying the overall, partial, and local residence time distributions (RTD); overall, partial and local residence revolution distributions (RRD) and overall, partial and local residence volume distributions (RVD) in a co‐rotating twin screw extruder, on the one hand; and establishing the relationships among them, on the other hand. Emphasis was placed on the effects of the type and geometry of mixing elements (a gear block and various types of kneading elements differing in staggering angle) and process parameters on the RTD, RRD and RVD. The overall and partial RTD were directly measured in‐line during the extrusion process and the local ones were calculated by deconvolution based on a statistical theory. The local RTD allowed comparing the mixing performance of mixing elements. Also it was confirmed both experimentally and theoretically that specific throughput, defined as a ratio of throughput (Q) over screw speed (N), controlled all the above three types of residence distributions, be they local, partial or overall. The RRD and RVD do not provide more information on an extrusion process than the corresponding RTD. Rather they are different ways of representing the same phenomena. POLYM. ENG. SCI., 48:19–28, 2008. © 2007 Society of Plastics Engineers  相似文献   
27.
28.
Calculations and detailed first principle and thermodynamic analyses have been performed to understand the formation mechanism of K2Ti6O13 nanowires (NWs) by a hydrothermal reaction between bulk Na2Ti3O7 crystals and a KOH solution. It is found that direct ion exchange between K+ and Na+ plus H+ interactions with [TiO6] octahedra in Na2Ti3O7 promote the formation of an intermediate H2K2Ti6O14 phase. The large lattice mismatch between this intermediate phase and the bulk Na2Ti3O7 structure, and the large energy reduction associated with the formation of this intermediate phase, drive the splitting of the bulk crystal into H2K2Ti6O14 NWs. However, these NWs are not stable because of large [TiO6] octahedra distortion and are subject to a dehydration process, which results in uniform K2Ti6O13 NWs with narrowly distributed diameters of around 10 nm.  相似文献   
29.
By applying a combination of characterisation tools, changes in structural and superconducting properties with nominal Mg non‐stoichiometry in MgxB2 are found. The non‐stoichiometry produces enhanced in‐field critical current densities (Jc's) and upper critical field / irreversibility field (Hc2/Hirr(T)) values. Upper critical fields of ~ 21 T (4.2 K) were obtained in nominal Mg‐deficient samples compared to ~ 17 T (4.2 K) for near‐stoichiometric samples.  相似文献   
30.
BACKGROUND: In the framework of biological processes used for waste gas treatment, the impact of the inoculum size on the start‐up performance needs to be better evaluated. Moreover, only a few studies have investigated the behaviour of elimination capacity and biomass viability in a two‐phase partitioning bioreactor (TPPB) used for waste gas treatment. Lastly, the impact of ethanol as a co‐substrate remains misunderstood. RESULTS: Firstly, no benefit of inoculation with a high cellular density (>1.5 g L?1) was observed in terms of start‐up performance. Secondly, the TPPB was monitored for 38 days to characterise its behaviour under several operational conditions. The removal efficiency remained above 63% for an inlet concentration of 7 g isopropylbenzene (IPB) m?3 and at some time points reached 92% during an intermittent loading phase (10 h day?1), corresponding to a mean elimination capacity of 4 × 10?3 g L?1 min?1 (240 g m?3 h?1) for a mean IPB inlet load of 6.19 × 10?3 g L?1 min?1 (390 g m?3 h?1). Under continuous IPB loading, the performance of the TPPB declined, but the period of biomass acclimatisation to this operational condition was shorter than 5 days. The biomass grew to approximately 10 g L?1 but the cellular viability changed greatly during the experiment, suggesting an endorespiration phenomenon in the bioreactor. It was also shown that simultaneous degradation of IPB and ethanol occurred, suggesting that ethanol improves the biodegradation process without causing oxygen depletion. CONCLUSION: A water/silicone oil TPPB with ethanol as co‐substrate allowed the removal of a high inlet load of IPB during an experiment lasting 38 days. Copyright © 2008 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号