首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1248篇
  免费   94篇
  国内免费   13篇
电工技术   34篇
综合类   9篇
化学工业   283篇
金属工艺   60篇
机械仪表   54篇
建筑科学   59篇
矿业工程   8篇
能源动力   54篇
轻工业   118篇
水利工程   23篇
石油天然气   26篇
无线电   123篇
一般工业技术   202篇
冶金工业   66篇
原子能技术   5篇
自动化技术   231篇
  2024年   3篇
  2023年   18篇
  2022年   42篇
  2021年   74篇
  2020年   81篇
  2019年   72篇
  2018年   112篇
  2017年   94篇
  2016年   97篇
  2015年   37篇
  2014年   92篇
  2013年   155篇
  2012年   93篇
  2011年   99篇
  2010年   58篇
  2009年   47篇
  2008年   47篇
  2007年   25篇
  2006年   20篇
  2005年   6篇
  2004年   11篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   10篇
  1997年   1篇
  1996年   5篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   1篇
  1987年   2篇
  1982年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有1355条查询结果,搜索用时 15 毫秒
61.
Vinyl ester/clay nanocomposites with 1, 3, and 5% nanoclay contents were prepared. X‐ray diffractography patterns and Scanning Electron micrographs showed that nanocomposites with the exfoliated structure were formed. Thermogravimetric analysis, water absorption test, and Tafel polarization method, respectively, revealed the improvements in thermal resistance, water barrier properties, and corrosion resistance properties of the samples with an increase in the amount of the incorporated nanoclay. Tensile tests showed that nanoclay also enhanced the mechanical properties of the polymer, so that the tensile strength of the samples with 5% nanoclay was more than 3 times higher than tensile strength of pure vinyl ester samples. Overall, the best properties were observed for the samples containing 5% nanoclay. Pure vinyl ester and nanocomposite with 5% nanoclay content were exposed to the electron beam radiation and their mechanical properties improved up to 500 kGy irradiation dose. Finally, pure vinyl ester and vinyl ester/nanoclay (5%) matrixes were reinforced with carbon fiber and the effect of electron beam irradiation on their mechanical properties was examined. The tensile strength and the modulus of the samples initially increased after exposure to the radiation doses up to 500 kGy and then a decrease was observed as the irradiation dose rose to 1000 kGy. Moreover, nanoclay moderated the effect of the irradiation. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42393.  相似文献   
62.
Microencapsulation is a rapidly expanding technology which is a unique way to package materials in the form of micro- and nano-particles, and has been well developed and accepted within the pharmaceutical, chemical, food and many other industries. Spray drying is the most commonly used encapsulation technique for food products. A successful spray drying encapsulation relies on achieving high retention of the core materials especially volatiles and minimum amounts of the surface oil on the powder particles for both volatiles and non-volatiles during the process and storage. The properties of wall and core materials and the prepared emulsion along with the drying process conditions will influence the efficiency and retention of core compounds. This review highlights the new developments in spray drying microencapsulation of food oils and flavours with an emphasis on the encapsulation efficiency during the process and different factors which can affect the efficiency of spray drying encapsulation.  相似文献   
63.
In this study, a set of constitutive equation corrected for deformation heating is proposed for a near equi-atomic NiTi shape memory alloy using isothermal hot compression tests in temperature range of 700 to 1000 °C and strain rate of 0.001 to 1 s−1. In order to determine the temperature rise due to deformation heating, Abaqus simulation was employed and varied thermal properties were considered in the simulation. The results of hot compression tests showed that at low pre-set temperatures and high strain rates the flow curves exhibit a softening, while after correction of deformation heating the softening is vanished. Using the corrected flow curves, the power-law constitutive equation of the alloy was established and the variation of constitutive constants with strain was determined. Moreover, it was found that deformation heating introduces an average relative error of about 9.5% at temperature of 800 °C and strain rate of 0.1 s−1. The very good agreement between the fitted flow stress (by constitutive equation) and the measured ones indicates the accuracy of the constitutive equation in analyzing the hot deformation behavior of equi-atomic NiTi alloy.  相似文献   
64.
In order to prepare a specific melanocortin type 2 receptor (MC2R) ligand, b1-24-corticotrophin was pre-pared in one-step reaction with [18F] SFB and b-1-24-corticotrophin pharmaceutical solution (1 mg/mL, pH=6.5). [18F]SFB was prepared in a semi-automated module in two steps with an overall radiochemical yield of 47% to EOB (not-decay corrected) in 90 min. The 18F-labeled intermediates and 18F-labeled peptide was checked by RTLC and HPLC. The results show that the radiochemical purity is >95% and the yield to EOB (not-decay corrected) is 29% for final 18F-labeled peptide at optimized conditions. Preliminary in vivo studies in normal mice were performed to deter-mine biodistribution of the 18F-labeled peptide for 150 min. The results show that the major tracer uptake is consistent with the natural distribution of MC2R receptors in mammals. Testes/blood and testes/muscle ratios for 18F-labeled peptide at 150 min were 184 and 1.56, respectively, and adipocyte/blood and adipocyte/muscle ratios at 120 min were 221 and 142, respectively. The data support the specific receptor binding of the radiolabeled peptide as reported for MC2R receptor accumulation in adipocytes and testes and demonstrates the retention of biological activity of the pep-tide. This tracer can be used in detection of MC2R distribution in malignancies and sex organ diseases.  相似文献   
65.
Spinal cord injury (SCI) causes significant mortality and morbidity. Currently, no FDA-approved pharmacotherapy is available for treating SCI. Previously, low doses of estrogen (17β-estradiol, E2) were shown to improve the post-injury outcome in a rat SCI model. However, the range of associated side effects makes advocating its therapeutic use difficult. Therefore, this study aimed at investigating the therapeutic efficacy of Premarin (PRM) in SCI. PRM is an FDA-approved E2 (10%) formulation, which is used for hormone replacement therapy with minimal risk of serious side effects. The effects of PRM on SCI were examined by magnetic resonance imaging, immunofluorescent staining, and western blot analysis in a rat model. SCI animals treated with vehicle alone, PRM, E2 receptor antagonist (ICI), or PRM + ICI were graded in a blinded way for locomotor function by using the Basso–Beattie–Bresnahan (BBB) locomotor scale. PRM treatment for 7 days decreased post-SCI lesion volume and attenuated neuronal cell death, inflammation, and axonal damage. PRM also altered the balance of pro- and anti-apoptotic proteins in favor of cell survival and improved angiogenesis and microvascular growth. Increased expression of estrogen receptors (ERs) ERα and ERβ following PRM treatment and their inhibition by ER inhibitor indicated that the neuroprotection associated with PRM treatment might be E2-receptor mediated. The attenuation of glial activation with decreased inflammation and cell death, and increased angiogenesis by PRM led to improved functional outcome as determined by the BBB locomotor scale. These results suggest that PRM treatment has significant therapeutic implications for the improvement of post-SCI outcome.  相似文献   
66.
In the past decades, the use of fibre-reinforced polymer (FRP) for enhancement of strength and stiffness of wood-based structural members has been established as an economical method. New developments have been ongoing to further improve the structural performance of glued-laminate beams. Recently, a novel integral sub-laminated composite, referred to as pre-stressed FRP–wood composite laminate (PWCL), was patented (KarisAllen and Tynes, 2000 [1]). This system is comprised of pre-stressed high performance fibres, sandwiched and glued within layers of pre-compressed wood strands. The resulting sub-laminated system may be attached to the tension zone of timber/glulam beams. A concern involved with the use of such pre-stressing scheme has been the issue of creep, which could affect the long-term performance of such composite beams. This paper presents the results of a study conducted to investigate the long-term performance of glulam beams reinforced with PWCL sub-laminate. Experimental investigations were conducted to determine the creep parameters of FRP composites and wood species employed in the fabrication of PWCL. The main objective was to develop a finite element model (FEM) to simulate the pre-stressing process and to predict the creep response of an entire reinforced glulam system, including the PWCL, under an externally applied load and constant environmental condition. The FEM was constructed in the Abaqus environment and the residual stress distribution was modeled in a step-wise scheme, corresponding to each step of PWCL and beam fabrication as well as the in situ response of the composite beam. The integrity of the creep model used in the simulation was verified by the experimental results obtained from tests performed on FRP reinforced small-size wood.  相似文献   
67.
Austenite was stabilized in the martensitic stainless steel grade AISI 420 by means of quenching and partitioning (Q&P) processing. The effects of quenching temperature on the microstructure and mechanical properties were investigated. The specimens processed at low quench temperatures (regime I) had a microstructure consisting of tempered martensite and retained austenite. At high quench temperatures (regime II), fresh martensite was present too. The highest austenite fraction of about 0.35 was obtained at the quench temperature delineating regimes I and II. The amount of carbon in retained austenite increased as the quench temperature decreased. The carbon level of austenite was, however, much lower than the carbon concentrations expected from full partitioning assumption. This was mainly due to the extensive cementite formation in the partitioning step. Stabilization of austenite by Q&P processing was found not to be purely chemical. Austenite stabilization was also assisted by locking, because of local carbon enrichment, of potential martensite nucleation sites in the austenite/martensite boundaries and in austenite defects. The importance of the latter stabilization mechanism increased at higher martensite fractions. According to the tensile test results, the Q&P processed specimen with the highest austenite fraction was not associated with the best combination of strength and ductility. The mechanical stability of austenite was found to increase with its carbon concentration being the highest at the lowest quench temperature. The thermal stability, on the other hand, was almost inversely proportional to the retained austenite fraction, being low at intermediate quench temperatures where the retained austenite fraction was high.  相似文献   
68.
Polymer electrolyte membrane fuel cell (PEMFC) is one of the promising electricity generating technologies with a wide range of applicability; however, it needs further improvements to be commercially viable. The design of a PEMFC plays a key role in its viability, and is often reduced to the design of gas flow channel (GFC) at the cathode side. In this study, it is attempted to figure out the optimal dimensions (i.e., width and height) of the rectangular cross sectional area of the cathode GFC of a PEMFC via numerical examination of various sets of dimensions. The optimization procedure is carried out for two different objective functions (the maximization of the maximum power and the maximization of the average power over a range of operating voltages) as well as for different sets of operating conditions (cell temperature, operating pressure, and stoichiometry and relative humidity of inlet gases). To the best of authors' knowledge, the following observations may be considered to be the contributions of the present work to the subject: First, the influence of cross sectional dimensions on the PEMFC performance is considerable, and this considerable influence is not limited to a specific set of operating conditions. Second, the performance of the PEMFC may both deteriorate and improve with the channel width or height, depending on its operating conditions as well as on its current dimensions. Third, there exists no single optimal cross section for different sets of operating conditions. Fourth, the polarization curves of two different cross sections may intersect, and as a result, one cross section may have a greater maximum power but at the same time lower average power in comparison to the other one. And fifth, among all the operating parameters, the relative humidity of inlet gases has the greatest effect on the optimal cross sectional dimensions.  相似文献   
69.
The effect of bed-load transport on flow resistance of alluvial channels with undulated bed was experimentally investigated. The experiments were carried out in a tilting flume 250mm wide and 12.5m long with glass-sides of rectangular cross-section and artificial dune shaped floor that was made from Plexi-glass. Steady flow of clear as against sediment-laden water with different flow depths and velocities were studied in the experiments with a fine sand (d 50 = 0.5mm). The results indicate that the transport of fine particles (d 50 = 0.5mm) can decrease the friction factor by 22% and 24% respectively for smooth and rough beds. Increasing the bed-load size (d 50 = 2.84 mm) can decrease the friction factor by 32% and 39% respectively for smooth and rough beds. The decrease in flow resistance is due to filling up of the troughs of dunes. This separation zone is responsible for increasing the flow resistance. On the upstream side of dunes condition is similar to plane bed. Presence of bed-load causes to increase the shear velocity and hence increasing flow resistance. But decreasing in flow resistance is more and it causes to decrease the total flow resistance. Grains saturated the troughs in the bed topography, effectively helping in smoothening of bed irregularities.  相似文献   
70.
This work is concerned about the preparation and characterization of MnO4 supported poly (4-methyl vinylpyridinium)/SBA-15 which was effectively employed as a heterogeneous oxidant for oxidation of aromatic alcohols. P4MVPMnO4/SBA-15 exhibited excellent activity and selectivity under mild and solvent-less conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号