首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6619篇
  免费   735篇
  国内免费   21篇
电工技术   58篇
综合类   6篇
化学工业   1797篇
金属工艺   261篇
机械仪表   413篇
建筑科学   119篇
矿业工程   1篇
能源动力   278篇
轻工业   784篇
水利工程   30篇
石油天然气   6篇
无线电   1139篇
一般工业技术   1484篇
冶金工业   239篇
原子能技术   100篇
自动化技术   660篇
  2024年   4篇
  2023年   103篇
  2022年   112篇
  2021年   269篇
  2020年   189篇
  2019年   216篇
  2018年   260篇
  2017年   286篇
  2016年   336篇
  2015年   276篇
  2014年   386篇
  2013年   467篇
  2012年   509篇
  2011年   666篇
  2010年   455篇
  2009年   391篇
  2008年   355篇
  2007年   283篇
  2006年   253篇
  2005年   218篇
  2004年   163篇
  2003年   188篇
  2002年   158篇
  2001年   126篇
  2000年   109篇
  1999年   98篇
  1998年   136篇
  1997年   68篇
  1996年   62篇
  1995年   41篇
  1994年   32篇
  1993年   22篇
  1992年   17篇
  1991年   17篇
  1990年   21篇
  1989年   16篇
  1988年   12篇
  1987年   10篇
  1986年   7篇
  1985年   9篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   2篇
  1978年   2篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有7375条查询结果,搜索用时 15 毫秒
941.
Solution‐processed indium‐gallium‐zinc oxide (IGZO) thin film transistors (TFTs) have become well known in recent decades for their promising commercial potential. However, the unsatisfactory performance of small‐sized IGZO TFTs is limiting their applicability. To address this issue, this work introduces an interface engineering method of bi‐functional acid modification to regulate the interfaces between electrodes and the channels of IGZO TFTs. This method increases the interface oxygen vacancy concentration and reduces the surface roughness, resulting in higher mobility and enhanced contact at the interfaces. The TFT devices thus treated display contact resistance reduction from 9.1 to 2.3 kΩmm, as measured by the gated four‐probe method, as well as field‐effect mobility increase from 1.5 to 4.5 cm2 (V s)?1. Additionally, a 12 × 12 organic light emitting diode display constructed using the acid modified IGZO TFTs as switching and driving elements demonstrate the applicability of these devices.  相似文献   
942.
943.
944.
In this article, we demonstrate the liquid crystal (LC) alignment characteristics of solution‐derived nickel oxide (NiO) film modified with ion‐beam (IB) irradiation. Cross‐polarized optical microscopy and pretilt angle measurements verified that uniform LC alignment was achieved using the NiO film as an alignment layer regardless of IB incidence angle. Contact angle measurements revealed that all of the NiO films had a deionized water contact angle below 90°, which indicates that they had hydrophilic surfaces that had an effect on the homogeneous LC alignment. Atomic force microscopy was conducted to determine the physical surface modification due to the IB irradiation, which showed that it reduced the size of the surface grains with agglomerations depending on the surface tilt from the IB incidence angle. Furthermore, microgroove structures strongly related to uniform LC alignment were observed after IB irradiation. Chemical surface modification was investigated via an X‐ray photoelectron spectroscopy analysis which revealed that IB irradiation modified the chemical bonds in the NiO film, and this affected the LC alignment state. Thus, these results indicate that using NiO film exposed to IB irradiation as an alignment layer is a suitable method for LC applications.  相似文献   
945.
A new pixel structure for the realization of a 1‐μm‐pixel‐pitch display was developed. This structure, named vertically stacked thin‐film transistor (VST), was based on the conventional back‐channel etched thin‐film transistor (TFT), but all the layers except the horizontal gate line were vertically stacked on the embedded data line, enabling the implementation of high‐resolution display panels. The VST device with a channel length of 1 μm showed a high field effect mobility of more than 50 cm2/Vs and low subthreshold slope of 78 mV per decade. It also shows a high uniform electrical characteristic over the entire 6‐in. wafer. The development of a new pixel architecture is expected to enable the implementation of 1‐μm‐pixel‐pitch high‐resolution displays such as spatial light modulators for digital holograms.  相似文献   
946.
2D MoS2 nanostructures have recently attracted considerable attention because of their outstanding electrocatalytic properties. The synthesis of unique Co–Ru–MoS2 hybrid nanosheets with excellent catalytic activity toward overall water splitting in alkaline solution is reported. 1T′ phase MoS2 nanosheets are doped homogeneously with Co atoms and decorated with Ru nanoparticles. The catalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is characterized by low overpotentials of 52 and 308 mV at 10 mA cm?2 and Tafel slopes of 55 and 50 mV decade?1 in 1.0 m KOH, respectively. Analysis of X‐ray photoelectron and absorption spectra of the catalysts show that the MoS2 well retained its metallic 1T′ phase, which guarantees good electrical conductivity during the reaction. The Gibbs free energy calculation for the reaction pathway in alkaline electrolyte confirms that the Ru nanoparticles on the Co‐doped MoS2 greatly enhance the HER activity. Water adsorption and dissociation take place favorably on the Ru, and the doped Co further catalyzes HER by making the reaction intermediates more favorable. The high OER performance is attributed to the catalytically active RuO2 nanoparticles that are produced via oxidation of Ru nanoparticles.  相似文献   
947.
Beyond a traditional view that metal nanoparticles formed upon electrochemical reaction are inactive against lithium, recently their electrochemical participations are manifested and elucidated as catalytic and interfacial effects. Here, ruthenium metal composed of ≈5 nm nanoparticles is prepared and the pure ruthenium as a lithium‐ion battery anode for complete understanding on anomalous lithium storage reaction mechanism is designed. In particular, the pure metal electrode is intended for eliminating the electrochemical reaction‐derived Li2O phase accompanied by catalytic Li2O decomposition and the interfacial lithium storage at Ru/Li2O phase boundary, and thereby focusing on the ruthenium itself in exploring its electrochemical reactivity. Intriguingly, unusual lithium storage not involving redox reactions with electron transfer but leading to lattice expansion is identified in the ruthenium electrode. Size‐dependent charge redistribution at surface enables additional lithium adsorption to occur on the inactive but more environmentally sensitive nanoparticles, providing innovative insight into dynamic electrode environments in rechargeable lithium chemistry.  相似文献   
948.
Fabrication of hierarchical nanosheet arrays of 1T phase of transition‐metal dichalcogenides is indeed a critical task, but it holds immense potential for energy storage. A single‐step strategy is employed for the fabrication of stable 1T‐MnxMo1–xS2–ySey and MoFe2S4–zSez hierarchical nanosheet arrays on carbon cloth as positive and negative electrodes, respectively. The flexible asymmetric supercapacitor constructed with these two electrodes exhibits an excellent electrochemical performance (energy density of ≈69 Wh kg?1 at a power density of 0.985 kW kg?1) with ultralong cyclic stability of ≈83.5% capacity retention, after 10 000 consecutive cycles. Co‐doping of the metal and nonmetal boosts the charge storage ability of the transition‐metal chalcogenides following enrichment in the metallic 1T phase, improvement in the surface area, and expansion in the interlayer spacing in tandem, which is the key focus of the present study. This study explicitly demonstrates the exponential enhancement of specific capacity of MoS2 following intercalation and doping of Mn and Se, and Fe2S3 following doping of Mo and Se could be an ideal direction for the fabrication of novel energy‐storage materials with high‐energy storage ability.  相似文献   
949.
Atherosclerosis development leads to irreversible cascades, highlighting the unmet need for improved methods of early diagnosis and prevention. Disturbed flow formation is one of the earliest atherogenic events, resulting in increased endothelial permeability and subsequent monocyte recruitment. Here, a mesenchymal stem cell (MSC)‐derived nanovesicle (NV) that can target disturbed flow sites with the peptide GSPREYTSYMPH (PREY) (PMSC‐NVs) is presented which is selected through phage display screening of a hundred million peptides. The PMSC‐NVs are effectively produced from human MSCs (hMSCs) using plasmid DNA designed to functionalize the cell membrane with PREY. The potent anti‐inflammatory and pro‐endothelial recovery effects are confirmed, similar to those of hMSCs, employing mouse and porcine partial carotid artery ligation models as well as a microfluidic disturbed flow model with human carotid artery‐derived endothelial cells. This nanoscale platform is expected to contribute to the development of new theragnostic strategies for preventing the progression of atherosclerosis.  相似文献   
950.
Yoon  Hyunseok  Song  Hee Jo  Ju  Bobae  Kim  Dong-Wan 《Nano Research》2020,13(10):2885-2885
Nano Research - The contributions of the first two authors were unfortunately misrepresented on the first page and the first page of the ESM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号