首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   134篇
  免费   7篇
电工技术   2篇
化学工业   54篇
金属工艺   3篇
机械仪表   2篇
建筑科学   7篇
矿业工程   1篇
能源动力   6篇
轻工业   22篇
水利工程   1篇
无线电   4篇
一般工业技术   22篇
冶金工业   4篇
原子能技术   1篇
自动化技术   12篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   15篇
  2020年   10篇
  2019年   15篇
  2018年   7篇
  2017年   8篇
  2016年   4篇
  2015年   11篇
  2014年   6篇
  2013年   19篇
  2012年   10篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
11.
Wireless Personal Communications - Mobile social networks are networks with mobile nodes which have social properties. Various methods for routing have been introduced in these networks. Some of...  相似文献   
12.
International Journal of Control, Automation and Systems - In this research, an Optimized Fuzzy-Padé Controller (OFPC) for attitude stabilization of a quadrotor is proposed by using Padé...  相似文献   
13.
Porous magnesium has a great potential to be used as degradable bone scaffolds. In this study, porous magnesium with 35% percolating porosity has been successfully fabricated through powder metallurgy route utilizing space holders. The intrinsic mechanical properties of the porous magnesium were measured by nanoindentation testing and analyzed with the Oliver–Pharr method. Afterward, a ceramic coating on the surface of the porous magnesium was performed by plasma electrolytic oxidation (PEO) treatment in a silicate‐based solution. The morphology and composition results of the PEO coatings indicated that it is possible to apply a homogenous and adhesive ceramic coating layer on all free surface of the porous magnesium through PEO method. The protective performance of the PEO coatings was evaluated using by potentiodynamic polarization and electrochemical impedance spectroscopy tests in simulated body fluid. The results revealed the PEO coating significantly improves biocorrosion resistance of the porous magnesium. Therefore, it can be used as an effective method to control the degradation rate of porous magnesium implants in the human body.  相似文献   
14.
The remarkable evolution of metal halide perovskites in the past dec-ade makes them promise for next-generation optoelectronic material.In particular,nanocrysta...  相似文献   
15.
The Ga(x)In(1-x)Sb ternary system has many interesting material properties, such as high carrier mobilities and a tunable range of bandgaps in the infrared. Here we present the first report on the growth and compositional control of Ga(x)In(1-x)Sb material grown in the form of nanowires from Au seeded nanoparticles by metalorganic vapor phase epitaxy. The composition of the grown Ga(x)In(1-x)Sb nanowires is precisely controlled by tuning the growth parameters where x varies from 1 to ~0.3. Interestingly, the growth rate of the Ga(x)In(1-x)Sb nanowires increases with diameter, which we model based on the Gibbs-Thomson effect. Nanowire morphology can be tuned from high to very low aspect ratios, with perfect zinc blende crystal structure regardless of composition. Finally, electrical characterization on nanowire material with a composition of Ga(0.6)In(0.4)Sb showed clear p-type behavior.  相似文献   
16.
This study presents a novel approach for indirect integration of InAs nanowires on 2' Si substrates. We have investigated and developed epitaxial growth of InAs nanowires on 2' Si substrates via the introduction of a thin yet high-quality InAs epitaxial layer grown by metalorganic vapor phase epitaxy. We demonstrate well-aligned nanowire growth including precise position and diameter control across the full wafer using very thin epitaxial layers (<300 nm). Statistical analysis results performed on the grown nanowires across the 2' wafer size verifies our full control on the grown nanowire with 100% growth yield. From the crystallographic viewpoint, these InAs nanowires are predominantly of wurtzite structure. Furthermore, we show one possible device application of the aforementioned structure in vertical wrap-gated field-effect transistor geometry. The vertically aligned InAs nanowires are utilized as transistor channels and the InAs epitaxial layer is employed as the source contact. A high uniformity of the device characteristics for numerous transistors is further presented and RF characterization of these devices demonstrates an f(t) of 9.8 GHz.  相似文献   
17.
Architected materials with nano/microscale orders can provide superior mechanical properties; however, reproducing such levels of ordering in complex structures has remained challenging. Inspired by Bouligand structures in nature, here, 3D printing of complex geometries with guided long-order radially twisted chiral hierarchy, using cellulose nanocrystals (CNC)-based inks is presented. Detailed rheological measurements, in situ flow analysis, polarized optical microscopy (POM), and director field analysis are employed to evaluate the chiral assembly over the printing process. It is demonstrated that shear flow forces inside the 3D printer's nozzle orient individual CNC particles forming a pseudo-nematic phase that relaxes to uniformly aligned concentric chiral nematic structures after the flow cessation. Acrylamide, a photo-curable monomer, is incorporated to arrest the concentric chiral arrangements within the printed filaments. The time series POM snapshots show that adding the photo-curable monomer at the optimized concentrations does not interfere with chiral self-assemblies and instead increases the chiral relaxation rate. Due to the liquid-like nature of the as-printed inks, optimized Carbopol microgels are used to support printed filaments before photo-polymerization. By paving the path towards developing bio-inspired materials with nanoscale hierarchies in larger-scale printed constructs, this biomimetic approach expands 3D printing materials beyond what has been realized so far.  相似文献   
18.
19.
A number of recent initiatives in both academia and industry have sought to achieve improvements in e-businesses through the utilization of Business Process Management (BPM) methodologies and tools. However there are still some inadequacies that need to be addressed when it comes to achieving alignment between business goals and business processes. The User Requirements Notation (URN), recently standardized by ITU-T, has some unique features and capabilities beyond what is available in other notations that can help address alignment issues. In this paper, a URN-based framework and its supporting toolset are introduced which provide business process monitoring and performance management capabilities integrated across the BPM lifecycle. The framework extends the URN notation with Key Performance Indicators (KPIs) and other concepts to measure and align processes and goals. An example process for controlling access to a healthcare data warehouse is used to illustrate and evaluate the framework. Early results indicate the feasibility of the approach.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号