首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   7篇
电工技术   2篇
化学工业   54篇
金属工艺   3篇
机械仪表   2篇
建筑科学   7篇
矿业工程   1篇
能源动力   6篇
轻工业   22篇
水利工程   1篇
无线电   4篇
一般工业技术   21篇
冶金工业   4篇
原子能技术   1篇
自动化技术   12篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   15篇
  2020年   10篇
  2019年   15篇
  2018年   7篇
  2017年   8篇
  2016年   4篇
  2015年   11篇
  2014年   6篇
  2013年   19篇
  2012年   10篇
  2011年   5篇
  2010年   3篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
61.
Silver nanoparticles were successfully prepared in two different solvents using a microwave heating technique, with various irradiation times. The silver nanoparticles were dispersed in polar liquids (distilled water and ethylene glycol) without any other reducing agent, in the presence of the stabilizer polyvinylpyrrolidone (PVP). The optical properties, thermal properties, and morphology of the synthesized silver particles were characterized using ultraviolet-visible spectroscopy, photopyroelectric technique, and transmission electron microscopy. It was found that for the both solvents, the effect of microwave irradiation was mainly on the particles distribution, rather than the size, which enabled to make stable and homogeneous silver nanofluids. The individual spherical nanostructure of self-assembled nanoparticles has been formed during microwave irradiation. Ethylene glycol solution, due to its special properties, such as high dielectric loss, high molecular weight, and high boiling point, can serve as a good solvent for microwave heating and is found to be a more suitable medium than the distilled water. A photopyroelectric technique was carried out to measure thermal diffusivity of the samples. The precision and accuracy of this technique was established by comparing the measured thermal diffusivity of the distilled water and ethylene glycol with values reported in the literature. The thermal diffusivity ratio of the silver nanofluids increased up to 1.15 and 1.25 for distilled water and ethylene glycol, respectively.  相似文献   
62.
Composite materials based on a combination of biodegradable polymers and bioactive ceramics, including chitosan and hydroxyapatite are discussed as suitable materials for scaffold fabrication. Diopside is a member of bioactive silicates; it is a good choice for hard tissue engineering because of its biocompatibility with host tissue and high mechanical strength. Chitosan and hydroxyapatite were extracted from shrimp shell and bovine bone, respectively and diopside nanoparticles were prepared by the sol-gel method. The present study reports on a chitosan composite which was reinforced by hydroxyapatite and diopside; the scaffolds were fabricated by the freeze-drying method. The so-produced chitosan-hydroxyapatite-diopside (CS-HA-DP) scaffolds were further cross-linked using tripolyphosphate (TPP) to achieve enhanced mechanical strength. The ratios of the ceramic components in composites were 5-58-37, 10-55-35, and 15-52-33 (diopside-hydroxyapatite-chitosan, w/w %). The physicochemical properties of scaffolds were investigated using Fourier-transform infrared spectrometry (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) techniques. The effect of scaffolds composition on bioactivity and biodegradability were studied well. To investigate mechanical properties of samples, compression test was done. Results showed that the composite scaffold with 5% DP has the highest mechanical strength. The porosity of composites dropped from 92% to 76% by increasing the amount of DP. Cytocompatibility of the scaffolds was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, alkaline phosphatase (ALP) activity, and cell attachment studies using human osteoblast cells. Results demonstrated no sign of toxicity and cells were found to be attached to the pore walls within the scaffolds; moreover, results illustrated that the developed composite scaffolds could be a potential candidate for tissue engineering.  相似文献   
63.
Background: Types A and B Niemann-Pick disease (NPD) are autosomal-recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase due to mutations in the sphingomyelin phosphodiesterase 1 (SMPD1) gene. Methods: In order to determine the prevalence and distribution of SMPD1 gene mutations, the genomic DNA of 15 unrelated Iranian patients with types A and B NPD was examined using PCR, DNA sequencing and bioinformatics analysis. Results: Of 8 patients with the p.G508R mutation, 5 patients were homozygous, while the other 3 were heterozygous. One patient was heterozygous for both the p.N385K and p.G508R mutations. Another patient was heterozygous for both the p.A487V and p.G508R mutations. Two patients (one homozygous and one heterozygous) showed the p.V36A mutation. One patient was homozygous for the c.1033–1034insT mutation. One patient was homozygous for the c.573delT mutation, and 1 patient was homozygous for the c.1417–1418delCT mutation. Additionally, bioinformatics analysis indicated that two new p.V36A and p.N385K mutations decreased the acid sphingomyelinase (ASM) protein stability, which might be evidence to suggest the pathogenicity of these mutations. Conclusion: with detection of these new mutations, the genotypic spectrum of types A and B NPD is extended, facilitating the definition of disease-related mutations. However, more research is essential to confirm the pathogenic effect of these mutations.  相似文献   
64.
We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (~500?°C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460?°C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.  相似文献   
65.
Efficient strategies to promote microvascularization in vascular tissue engineering, a central priority in regenerative medicine, are still scarce; nano- and mi...  相似文献   
66.
Exacerbating the imbalance between demand for freshwater and available water resources is the sub-optimal performance of water distribution systems, which are plagued with leaks that cause significant losses of treated freshwater. This paper presents an approach for leak detection that involves continuous monitoring of the changes in the correlation between surface acceleration measured at discrete locations along the pipeline length. A metric called leak detection index is formulated based on cross-spectral density of measured pipe surface accelerations for detecting the onset and assessing the severity of leaks. The proposed non-invasive approach requires minimal human intervention and works under normal operating conditions of the pipeline system without causing any operational disturbances. The approach is demonstrated on a 76 mm diameter polyvinyl chloride pipeline test system considering varying leak severities. The preliminary results presented in this paper seem promising and lead to several interesting questions that will require further research.  相似文献   
67.
Nanocapsules containing hexadecane (HD) as core material and polystyrene (PS) as shell, were electrospun with polyethylene oxide (PEO) as a matrix material into the fiber webs. The morphology and thermal properties of PEO fibers containing (1) both PS nanocapsules with core-shell morphology and solid PS particles, (2) only solid PS particles, and (3) without any PS particles, were compared and the effect of PEO concentration on morphology of the resultant fibers have been studied. The resultant fibers were characterized by means of Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). Both TEM observation and DSC analyses confirmed that the PS nanocapsules were encapsulated within the PEO nanofibers. The fibers had an average diameter of 950 nm for nanocapsules containing parts, 300 nm for solid particles containing parts, and 150 nm for usual parts. The phase change temperatures and phase transition heat of the produced fibers were determined by DSC analyses. TGA was also used to confirm the preparation of multi phase fibers and to determine the amount of HD within the fibers.  相似文献   
68.
Precise prediction of protein secondary structures from the associated amino acids sequence is of great importance in bioinformatics and yet a challenging task for machine learning algorithms. As a major step toward predicting the ultimate three dimensional structures, the secondary structure assignment specifies the protein function. Considering a multilayer perceptron neural network, pruned for optimum size of hidden layers, as the reference network, advanced kinds of recurrent neural network (RNN) are devised in this article to enhance the secondary structure prediction. To better model the strong correlations between secondary structure elements, types of modular reciprocal recurrent neural networks (MRR-NN) are examined. Additionally, to take into account the long-range interactions between amino acids in formation of the secondary structure, bidirectional RNN are investigated. A multilayer bidirectional recurrent neural network (MBR-NN) is finally applied to capture the predominant long-term dependencies. Eventually, a modular prediction system based on the interactive combination of the MRR-NN and MBR-NN boosts the percentage accuracy (Q3) up to 76.91% and augments the segment overlap (SOV) up to 68.13% when tested on the PSIPRED dataset. The coupling effects of the secondary structure types as well as the sequential information of amino acids along the protein chain can be well cast by the integration of the MRR-NN and the MBR-NN.  相似文献   
69.
4,4′‐(Hexafluoroisopropylidene)‐bis‐(phthalic anhydride) (1) was reacted with L ‐leucine (2) in toluene solution at refluxing temperature in the presence of triethylamine and the resulting imide‐acid (4) was obtained in quantitative yield. The compound (4) was converted to the diacid chloride (5) by reaction with thionyl chloride. The polymerization reaction of the imide‐acid chloride (5) with 1,6‐hexamethylenediamine (6a) , benzidine (6b) , 4,4′‐diaminodiphenylmethane (6c) , 1,5‐diaminoanthraquinone (6d) , 4,4′‐sulfonyldianiline (6e) , 3,3′‐diaminobenzophenone (6f) , p‐phenylenediamine (6g) and 2,6‐diaminopyridine (6h) was carried out in chloroform/DMAc solution. The resulting poly(amide‐imide)s were obtained in high yield and are optically active and thermally stable. All of the above compounds were fully characterized by IR, elemental analyses and specific rotation. Some structural characterization and physical properties of those optically active poly(amide‐imide)s are reported. © 1999 Society of Chemical Industry  相似文献   
70.
Hypoxia has an important role in tumor progression via the up-regulation of growth factors and cellular adaptation genes. These changes promote cell survival, proliferation, invasion, metastasis, angiogenesis, and energy metabolism in favor of cancer development. Hypoxia also plays a central role in determining the resistance of tumors to chemotherapy. Hypoxia of the tumor microenvironment provides an opportunity to develop new therapeutic strategies that may selectively induce apoptosis of the hypoxic cancer cells. Melatonin is well known for its role in the regulation of circadian rhythms and seasonal reproduction. Numerous studies have also documented the anti-cancer properties of melatonin, including anti-proliferation, anti-angiogenesis, and apoptosis promotion. In this paper, we hypothesized that melatonin exerts anti-cancer effects by inhibiting hypoxia-induced pathways. Considering this action, co-administration of melatonin in combination with other therapeutic medications might increase the effectiveness of anti-cancer drugs. In this review, we discussed the possible signaling pathways by which melatonin inhibits hypoxia-induced cancer cell survival, invasion, migration, and metabolism, as well as tumor angiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号