首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   28篇
  国内免费   1篇
电工技术   3篇
化学工业   66篇
金属工艺   27篇
机械仪表   14篇
建筑科学   4篇
能源动力   15篇
轻工业   38篇
无线电   67篇
一般工业技术   84篇
冶金工业   8篇
原子能技术   7篇
自动化技术   25篇
  2023年   4篇
  2022年   3篇
  2021年   12篇
  2020年   4篇
  2019年   14篇
  2018年   10篇
  2017年   12篇
  2016年   14篇
  2015年   11篇
  2014年   12篇
  2013年   16篇
  2012年   27篇
  2011年   35篇
  2010年   38篇
  2009年   31篇
  2008年   22篇
  2007年   15篇
  2006年   13篇
  2005年   14篇
  2004年   11篇
  2003年   8篇
  2002年   5篇
  2001年   7篇
  2000年   1篇
  1999年   4篇
  1998年   6篇
  1996年   1篇
  1995年   5篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有358条查询结果,搜索用时 0 毫秒
41.
A tall building reacts sensitively to winds because the wind force increases according to the height and shape of the building. Various shapes of tall buildings and their aerodynamic characteristics have been studied extensively. For structural design and occupant comfort, the dynamic displacement of a tall building must be maintained within the criteria for acceptable levels of wind‐induced motion. An aerodynamically appropriate building shape needs to be selected at the design stage of a tall building. In this study, wind‐induced vibration responses were investigated, according to the criteria for maximum acceptable displacement and acceleration. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
42.
A very small patch‐type RFID tag antenna (UHF band) using ceramic material mountable on metallic surfaces is presented. The size of the proposed tag is 25 mm×25 mm×3 mm. The impedance of the antenna can be easily matched to the tag chip impedance by adjusting the size of the shorting plate of the patch and the size of the feeding loop. The measured maximum reading distance of the tag at 910 MHz was 5 m when it was mounted on a 400 mm × 400 mm metallic surface. The proposed design is verified by simulation and measurements which show good agreement.  相似文献   
43.
44.
45.
High‐resolution 3D‐printed stainless steel metal microreactors (3D‐PMRs) with different cross‐sectional geometry are fabricated to control ultrafast intramolecular rearrangement reactions in a comparative manner. The 3D‐PMR with circular channel demonstrates the improved controllability in rapid Fries‐type rearrangement reactions, because of the superior mixing efficiency to rectangular cross‐section channels (250 µm × 125 µm) which is confirmed based on the computational flow dynamics simulation. Even in case of very rapid intramolecular rearrangement of sterically small acetyl group occurring in 333 µs of reaction time, the desired intermolecular reaction can outpace to the undesired intramolecular rearrangement using 3D‐PMR to result in high conversion and yield.  相似文献   
46.
The demand for defect diagnoses is gradually gaining ground owing to the growing necessity to implement safe inspection methods to ensure the durability and quality of structures. However, conventional manpower-based inspection methods not only incur considerable cost and time, but also cause frequent disputes regarding defects owing to poor inspections. Therefore, the demand for an effective and efficient defect-diagnosis model for concrete structures is imminent, as the reduction in maintenance costs is significant from a long-term perspective. Thus, this paper proposes a deep learning-based image object-identification method to detect the defects of paint peeling, leakage peeling, and leakage traces that mostly occur in underground parking lots made of concrete structures. The deep learning-based object-detection method can replace conventional visual inspection methods. A faster region-based convolutional neural network (R-CNN) model was used with a training dataset of 6,281 images that utilized a region proposal network to objectively localize the regions of interest and detect the surface defects. The defects were classified according to their type, and the learning of each exclusive model was ensured through test sets obtained from real underground parking lots. As a result, average precision scores of 37.76%, 36.42%, and 61.29% were obtained for paint peeling, leakage peeling, and leakage trace defects, respectively. Thus, this study verified the performance of the faster RCNN-based defect-detection algorithm along with its applicability to underground parking lots.  相似文献   
47.
Yoo  Byoung-Wook  Kim  Bom  Joshi  Pankaj  Kwon  Sung-Ok  Kim  YeonJin  Oh  Jung-Sook  Kim  Jeongseon  Oh  Se-Young  Lim  Ji-Ae  Choi  Byung-Sun  Kim  Yu-Mi  Eom  Sang-Yong  Hong  Young-Seob  Sohn  Seok-Joon  Park  Kyung-Su  Pyo  Heesoo  Kim  Ho  Ha  Mina  Park  Jung-Duck  Kwon  Ho-Jang  Lee  Sang-Ah 《Food science and biotechnology》2018,27(4):1227-1237
Food Science and Biotechnology - This study was aimed to examine the association the blood/urinary concentration of toxic metal (Hg, Pb, and Cd) with children’s dietary patterns. This...  相似文献   
48.
Dye-Sensitized Solar Cells (DSSCs) comprised of TiO2 porous films with multi-walled carbon nanotubes (MWNT) were prepared at low temperature (150 degrees C). MWNT were incorporated to facilitate the fast electron transport resulting from metallic properties of carbon nanotubes. In order to enhance the effect of MWNT incorporation, TiO2-grafted MWNT (TiO2-MWNT) was synthesized which can increase the electron transport rate further due to proximity of TiO2 to MWNT The presence of TiO2 nanoparticles on the surface of MWNT was confirmed by electron microscopy and energy dispersive X-ray spectroscopy. As in the DSSCs prepared through high temperature sintering of photoanodes, the maximum content of MWNT incorporated into TiO2 was limited to 0.01 wt% relative to TiO2. TiO2 photoanodes including TiO2-grafted MWNT (TiO2-MWNT/P25) enhanced the cell efficiencies by ca. 28% and 14%, relative to TiO2 photoanodes without and with MWNT respectively, reaching the efficiency of 5.0%. Electrochemical impedance spectroscopy (EIS) was utilized to examine the effect of incorporation of TiO2 nanoparticles grafted to MWNT on the cell performance.  相似文献   
49.
Biological hydrogen production by the green alga, Chlamydomonas reinhardtii can be induced in conditions of sulfur deprivation. In this study, we investigated the repeated and enhanced hydrogen production afforded by the re-addition of sulfate with monitoring of pH and concentration of chlorophyll and sulfate. Without adjustment of the pH, the optimal concentration of re-added sulfate was 30 μM for the hydrogen production. By the re-addition of 30 μM of sulfate and the adjustment of the pH during 4 cycles of repeated production, we obtained the maximum amount of 789 ml H2 l−1 culture, which is 3.4 times higher than that of one batch production without adjustment of pH, 236 ml H2 l−1 culture. This means that the enhancement of the hydrogen production can be achieved by the careful control of the sulfate re-addition and pH adjustment in the sulfur deprived culture.  相似文献   
50.
This study reports the high temperature oxidation kinetics, area specific resistance (ASR), and interfacial microstructure of metallic interconnects coated by (La0.8Sr0.2)0.98MnO3 (LSM) in air atmosphere at 800 °C. An efficient LSM conductive layer was fabricated on metallic interconnects for solid oxide fuel cells (SOFCs) by using a wet spray coating method. The optimum conditions for slurries used in the wet spray coating were determined by the measurement of slurry viscosity and coated surface morphology. The surface roughnesses of the substrates were increased through sandblast treatment. The adhesive strength of the interface between the coated layer and the metal substrate increased with increased surface roughness of the metallic interconnects. The electrical conductivities of the coated substrates were measured by using a DC two-point and four-wire method under air atmosphere at 800 °C. Of note, the Crofer22APU treated at 1100 °C in N2 with 10 vol.% H2 showed long-term stability and a lower ASR value than other samples(heat-treated at 800 °C and 900 °C). After an 8000-h oxidation experiment the coated Crofer22APU substrate, the ASR showed a low value of 23 mΩ cm2. The thickness of the coated conductive oxide layer was about 10-20 μm. These results show that a coated oxide layer prevents the formation and the growth of scale (Cr2O3 and (Mn, Cr, Fe)3O4 layer) and enhances the long-term stability and electrical performance of metallic interconnects for SOFCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号